Abstract— We have examined the ability of different fluorescent DNA dyes to become chemically excited by the peroxyoxalate chemiluminescent reaction. The intercalating dyes ethidium bromide and propidium iodide, and the bis-intercalating dyes ethidium homodimer-1, benzoxazolium-4-pyridinium dimer-1 and benzoxazolium-4-quinolinium dimer-1, exhibit an intense Chemiluminescence when they are excited by the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H2O2 reaction in the absence of DNA. However, the Chemiluminescence of these dyes is very low when they are bound to double-stranded DNA (dsDNA). In contrast, the minor groove-binding dye Hoechst 33258 excited by the TCPO-H2O2 reaction shows approximately the same Chemiluminescence intensity when it is free in solution or complexed with dsDNA. Structural alterations or partial dissociation of dsDNA-bis-intercalating dye complexes produced by the addition of acetone, NaCl, MgCl2 or the cationic surfactant cetyltrimethylammonium bromide increases the Chemiluminescence intensity. A moderate Chemiluminescence intensity is observed when bis-intercalating dyes are complexed with single-stranded DNA. Our results indicate that the energy from the intermediates produced in the peroxyoxalate chemiluminescent reaction cannot be efficiently transferred to fluorescent dyes complexed with DNA; chemiexcitation is almost completely inhibited when dyes are buried in the dsDNA structure by intercalation between the base pairs.