Get access

Photobleaching of Melanosomes from Retinal Pigment Epithelium: II. Effects on the Response of Living Cells to Photic Stress


Corresponding author email: (Janice M. Burke)


Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects of melanosome modifications.