SEARCH

SEARCH BY CITATION

References

  • 1
    Durán, N. and P. S. Song (1986) Hypericin and its photodynamic action. Photochem. Photobiol. 43, 677680.
  • 2
    Lown, J. W. (1997) Photochemistry and photobiology of perylenequinones. Can. J. Chem. 75, 99119.
  • 3
    Diwu, Z. (1995) Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 61, 529539.
  • 4
    Kraus, G. A., W. J. Zhang, M. J. Fehr, J. W. Petrich, Y. Wannemuehler and S. Carpenter (1996) Research at the interface between chemistry and virology: Development of a molecular flashlight. Chem. Rev. 96, 523535.
  • 5
    Falk, H. (1999) From the photosensitizer hypericin to the photoreceptor stentorin—The chemistry of phenanthroperylene quinones. Angewandte Chemie-International Edition 38, 31173136.
  • 6
    Tao, N., M. Orlando, J. S. Hyon, M. Gross and P. S. Song (1993) A new photoreceptor molecule from Stentor coeruleus. J. Am. Chem. Soc. 115, 25262528.
  • 7
    Checcucci, G., R. S. Shoemaker, E. Bini, R. Cerny, N. Tao, J. S. Hyon, D. Gioffre, F. Ghetti, F. Lenci and P. S. Song (1997) Chemical structure of blepharismin, the photosensor pigment for Blepharisma japonicum. J. Am. Chem. Soc. 119, 57625763.
  • 8
    Mukherjee, P., D. B. Fulton, M. Halder, X. Han, D. W. Armstrong, J. W. Petrich and C. S. Lobban (2006) Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J. Phys. Chem. B 110, 63596364.
  • 9
    Maeda, M., T. Naoki, T. Matsuoka, Y. Kato, H. Kotsuki, K. Utsumi and T. Tanaka (1997) Blepharismin 1-5, novel photoreceptor from the unicellular organism Blepharisma japonicum. Tetrahedon Lett. 38, 74117414.
  • 10
    Spitzner, D., G. Höfle, I. Klein, S. Pohlan, D. Ammermann and L. Jaenicke (1998) On the structure of oxyblepharismin and its formation from blepharismin. Tetrahedon Lett. 39, 40034006.
  • 11
    Wolkenstein, K., J. H. Gross, H. Falk and H. F. Schöler (2006) Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids. Proc. Roy. Soc. B 273, 451456.
  • 12
    De Riccardis, F., M. Iorizzi, L. Minale, R. Riccio, B. Richer de Forges and C. Debitus (1991) The gymnochromes: Novel marine brominated phenanthroperylene-quinone pigments from the stalked crinoid Gymnocrinus richeri. J. Org. Chem. 56, 67816787.
  • 13
    Takahashi, D., T. Maoka, M. Tsushima, K. Fujitani, M. Kozuka, T. Matsuno and T. Shingu (2002) New quinone sulfates from the crinoids Tropiometra afra macrodiscus and Oxycomanthus japonicus. Chem. Pharm. Bull. 50, 16091612.
  • 14
    Sauviat, M.-P., A.-G. Benoit, C. Debitus, I. Pouny and D. Laurent (2001) Alterations of transmembrane currents in frog atrial heart muscle induced by photoexcited gymnochrome A purified from the crinoid, Gymnochrinus richeri. Photochem. Photobiol. 74, 115119.
  • 15
    Diwu, Z. and J. W. Lown (1990) Hypocrellins and their use in photosensitization. Photochem. Photobiol. 52, 609616.
  • 16
    Chowdhury, P. K., K. Das, A. Datta, W. Z. Liu, H. Y. Zhang and J. W. Petrich (2002) A comparison of the excited-state processes of nearly symmetrical perylene quinones: Hypocrellin A and hypomycin B. J. Photochem. Photobiol. A Chem. 154, 107116.
  • 17
    Petrich, J. W. (2000) Excited-state intramolecular H-atom transfer in nearly symmetrical perylene quinones: Hypericin, hypocrellin, and their analogues. Int. Rev. Phys. Chem. 19, 479500.
  • 18
    Halder, M., P. K. Chowdhury, M. S. Gordon, J. W. Petrich, K. Das, J. Park and Y. Alexeev (2005) Hypericin and its perylene quinone analogs: Probing structure, dynamics, and interactions with the environment. Adv. Photochem. 28, 128.
  • 19
    Showalter, B. M., A. Datta, P. K. Chowdhury, J. Park, P. Bandyopadhyay, P. K. Choudhury, S. Kesavan, Y. Zeng, G. A. Kraus, M. S. Gordon, J. P. Toscano and J. W. Petrich (2001) Identification of a vibrational frequency corresponding to H-atom translocation in hypericin. Photochem. Photobiol. 74, 157163.
  • 20
    Fehr, M. J., M. A. McCloskey and J. W. Petrich (1995) Light-induced acidification by the antiviral agent hypericin. J. Am. Chem. Soc. 117, 18331836.
  • 21
    Dumas, S., D. Eloy and P. Jardon (2000) Photoinduced proton transfer from the first triplet state of hypericin in micellar dispersion. New J. Chem. 24, 711717.
  • 22
    Sureau, F., P. Miskovsky, L. Chinsky and P. Y. Turpin (1996) Hypericin-induced cell photosensitization involves an intracellular pH decrease. J. Am. Chem. Soc. 118, 94849487.
  • 23
    Eloy, D., A. Le Pellec and P. Jardon (1996) Protonation and deprotonation of hypericin in the ground state and the first excited singlet state in a nonionic micellar medium. J. Chim. Phys. Phys.-Chim. Biol. 93, 442457.
  • 24
    Immitzer, B., C. Etzlstorfer, P. A. Obermuller, M. Sonnleitner, G. J. Schutz and H. Falk (2000) On the photochemical proton expulsion capability of fringelite D–A model of the protist photosensory pigments of the stentorin and blepharismin types. Monatsh. Chem. 131, 10391045.
  • 25
    Song, P. S., E. B. Walker, R. A. Auerbach and G. W. Robinson (1981) Proton release from Stentor photoreceptors in the excited states. Biophys. J. 35, 551555.
  • 26
    Walker, E. B., M. Yoon and P. S. Song (1981) The pH dependence of photosensory responses in Stentor coeruleus and model system. Biochim. Biophys. Acta 634, 289308.
  • 27
    Gerson, F., G. Gescheidt, P. Haering, Y. Mazur, D. Freeman, H. Spreitzer and J. Daub (1995) Electron-acceptor properties of hypericin and its salts: An ESR/ENDOR and electrochemical study. J. Am. Chem. Soc. 117, 1186111866.
  • 28
    Wells, T. A., A. Losi, R. K. Dai, P. Scott, S. M. Park, J. Golbeck and P. S. Song (1997) Electron transfer quenching and photoinduced EPR of hypericin and the ciliate photoreceptor stentorin. J. Phys. Chem. A 101, 366372.
  • 29
    Darmanyan, A. P., W. S. Jenks, D. Eloy and P. Jardon (1999) Quenching of excited triplet state hypericin with energy acceptors and donors and acceptors of electrons. J. Phys. Chem. B 103, 33233331.
  • 30
    Wills, N. J., J. Park, J. Wen, S. Kesavan, G. A. Kraus, J. W. Petrich and S. Carpenter (2001) Tumor cell toxicity of hypericin and related analogs. Photochem. Photobiol. 74, 216220.
  • 31
    Racinet, H., P. Jardon and R. Gautron (1988) Formation d’oxygène singulet photosensibilisée par l’hypericine: Étude cinétique en milieu micillaire non ionique. J. Chim. Phys. 85, 971977.
  • 32
    Jardon, P., N. Lazortchak and R. Gautron (1987) Formation of singlet oxygen 1Dg photosensitized by hypericin. Characterization and study of the mechanism by laser spectroscopy. J. Chim. Phys. Phys.-Chim. Biol. 84, 11411145.
  • 33
    Darmanyan, A. P., L. Burel, D. Eloy and P. Jardon (1994) Singlet oxygen production by hypericin in various solvents. J. Chim. Phys. 91, 17741785.
  • 34
    Chen, B., T. Roskams and P. A. M. De Witte (2002) Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem. Photobiol. 76, 509513.
  • 35
    Sobierajska, K., H. Fabczak and S. Fabczak (2006) Photosensory transduction in unicellular eukaryotes: A comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms. J. Photochem. Photobiol. B 83, 163171.
  • 36
    Fabczak, H. (2000) Protozoa as model system for studies of sensory light transduction: Photophobic response in the ciliate Stentor and Blepharisma. Acta Protozool. 39, 171181.
  • 37
    Sgarbossa, A., G. Checcucci and F. Lenci (2002) Photoreception and photomovements of microorganisms. Photochem. Photobiol. Sci. 1, 459467.
  • 38
    Song, P. S. (1999) Photosensory signal transduction in Stentor coeruleus. J. Photoscience 6, 3745.
  • 39
    Song, P. S. (2005) Hypericin-like photoreceptors. In Handbook of Photosensory Receptors (Edited by J. L.Spudich and W. R.Briggs), pp. 417432. Wiley VCH, Weinheim, Germany.
  • 40
    Plaza, P., M. Mahet, M. M. Martin, N. Angelini, M. Malatesta, G. Checcucci and F. Lenci (2005) Spectroscopic study of the chromophore-protein association and primary photoinduced events in the photoreceptor of Blepharisma japonicum. Photochem. Photobiol. Sci. 4, 754761.
  • 41
    Giese, A. C. (1973) Blepharisma: The Biology of a Light-Sensitive Protozoan. Stanford University Press, Palo Alto, CA.
  • 42
    Terazima, M. N., H. Lio and T. Harumoto (1999) Toxic and phototoxic properties of the protozoan pigments blepharismin and oxyblepharismin. Photochem. Photobiol. 69, 4754.
  • 43
    Foissner, W. and S. Wölfl (1994) Revision of the genus Stentor Oken (Protozoa, Ciliophora) and description of S. araucanus nov. spec. from South American lakes. J. Plankton Res. 16, 255289.
  • 44
    Lobban, C. S., M. Schefter, A. G. B. Simpson, X. Pochon, J. Pawlowski and W. Foissner (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar. Biol. 140, 411423.
  • 45
    Lobban, C. S., M. Schefter, A. G. B. Simpson, X. Pochon, J. Pawlowski and W. Foissner (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar. Biol. 141, 207208.
  • 46
    Marangoni, R., L. Gobbi, F. Verni, G. Albertini and G. Colombetti (1996) Pigment granules and hypericin-like fluorescence in the marine ciliate Fabrea salina. Acta Protozool. 35, 177182.
  • 47
    Podestà, A., R. Marangoni, C. Villani and G. Colombetti (1994) A rhodopsin-like molecule on the plasma membrane of Fabrea salina. J. Eukaryot. Microbiol. 41, 565569.
  • 48
    Miyake, A., T. Harumoto, B. Salvi and V. Rivola (1990) Defensive function of pigment granules in Blepharisma. Eur. J. Protistol. 25, 310315.
  • 49
    Miyake, A., T. Harumoto and H. Iio (2001) Defense function of pigment granules in Stentor coeruleus. Eur. J. Protistol. 37, 7788.
  • 50
    Miyake, A. F., P. Buonanno, P. Saltalamacchia, M. E. Masaki and H. Iio (2003) Chemical defense by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Eur. J. Protistol. 39, 2536.
  • 51
    Harumoto, T., A. Miyake, N. Ishikawa, R. Sugibayashi, K. Zenfuku and H. Iio (1998) Chemical defense by means of pigmented extrusomes in the ciliate Blepharisma japonica. Eur. J. Protistol. 34, 458470.
  • 52
    Buonanno, F., P. Saltalamacchia and A. Miyake (2005) Defence function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. Eur. J. Protistol. 41, 151158.
  • 53
    Masaki, M. E., S. Hiro, Y. Usuki, T. Harumoto, M. N. Terazima, F. Buonanno, A. Miyake and H. Iio (2004) Climacostol, a defense toxin of Climacostomum virens (Protozoa, Ciliata), and its congeners. Tetrahedron 60, 70417048.
  • 54
    Modenutti, B. E., E. G. Balsiero and R. Moeller (1998) Vertical distribution and resistance to ultraviolet radiation of a planctonic ciliate, Stentor araucanus. Verh. Int. Ver. Theoret. Angew. Limnol. 26, 16361640.
  • 55
    Sommaruga, R., K. Whitehead, J. M. Shick and C. S. Lobban (2006) Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Maristentor dinoferus. Protist 157, 185191.
  • 56
    Schlichter, D., U. Meier and H. W. Fricke (1994) Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124131.
  • 57
    Miao, W., A. G. B. Simpson, C. Fu and C. S. Lobban (2005) The giant zooxanthellae-bearing ciliate Maristentor dinoferus is closely related to Folliculinidae. J. Eukaryot. Microbiol. 54, 1115.
  • 58
    Lynn, D. H. and E. B. Small (2000) Phylum Ciliophora DoFlein. In An Illustrated Guide to the Protozoa, 2nd edn (Edited by J. J.Lee, G. F.Leedale and P.Bradbury), pp. 371656. Society of Protozoologists, Lawrence, KS.
  • 59
    Finlay, B. J. and T. Fenchel (1986) Photosensitivity in the ciliated protozoan Loxodes: Pigment granules, adsorption and action spectra, blue light perception, and ecological significance. J. Protozool. 33, 534542.
  • 60
    Kim, I. H., J. S. Rhee, J. W. Huh, S. Florell, B. Faure, K. W. Lee, T. Kahsai, P. S. Song, N. Tamai and T. Yamazaki (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins. Biochim. Biophys. Acta 1040, 4357.
  • 61
    Matsuoka, T., D. Tokumori, H. Kotsuki, M. Ishida, M. Matsushita, S. Kimura, S. Itoh and G. Checcucci (2000) Analyses of structure of photoreceptor organelle and blepharismin-associated protein in unicellular eukaryote Blepharisma. Photochem. Photobiol. 72, 709713.
  • 62
    Tartar, V. (1961) The Biology of Stentor. Pergamon Press, London.
  • 63
    Fauré-Fremiet, E. (1932) Division et morphogenèse chez Folliculuina ampulla O.F. Müller. Bull. Biol. Fr. Belg. 66, 77110.
  • 64
    Hausmann, K. (1978) Extrusive organelles in protists. Int. Rev. Cytol. 52, 197276.
  • 65
    Rosati, G. and L. Modeo (2003) Extrusomes in ciliates: Diversification, distribution, and phylogenetic implications. J. Eukaryot. Microbiol. 50, 383402.
  • 66
    Mulisch, M. and K. Hausmann (1983) Lorica construction in Eufolliculina sp. (Ciliophora, Heterotrichida). J. Protozool. 30, 97104.
  • 67
    Barbier, M., E. Fauré-Fremiet and E. Lederer (1956) Sur les pigments du ciliéStentor niger. C. R. Acad. Sci., Paris 242, 21822184.
  • 68
    Møller, K. M. (1962) On the nature of stentorin. With an appendix on the photodynamic action of the pigment by K. M. Møller and A. H. Whiteley. C. R. Trav. Lab. Carlsberg 32, 471498.
  • 69
    Bary, B. M. (1950) Four new species of fresh-water ciliates from New Zealand. Zool. Publs. Victoria Univ. Coll. 2, 119.
  • 70
    Berger, H. and W. Foissner (1989) Morphology and biometry of some soil hypotrichs (Protozoa, Ciliophora) from Europe and Japan. Bull. Br. Mus. Nat. Hist. (Zool.) 55, 1946.
  • 71
    Matsuoka, T., Y. Watanabe, Y. Sagara, M. Takayanagi and Y. Kato (1995) Additional evidence for blepharismin photoreceptor pigment mediating step-up photophobic response of unicellular organism, Blepharisma. Photochem. Photobiol. 62, 190193.
  • 72
    Kraml, M. and W. Marwan (1983) Photomovement responses of the heterotrichous ciliate Blepharisma japonicum. Photochem. Photobiol. 37, 313319.
  • 73
    Scevoli, P., F. Bisi, G. Colombetti, F. Ghetti, F. Lenci and V. Passarelli (1987) Photomotile responses of Blepharisma japonicum. I. Action spectra determination and time-resolved fluorescence of photoreceptor pigments. J. Photochem. Photobiol. B 1, 7584.
  • 74
    Das, S. M. (1949) British Folliculinidae (Ciliata, Heterotricha). J. Mar. Biolog. Assoc. UK 28, 381393.
  • 75
    Sjögren, L. (1964) On the existence of stentorin II in folliculinids. Acta Zool. 46, 15.
  • 76
    Mulisch, M. and D. J. Patterson (1983) Eufolliculina uhligi n. sp., a new member of the Folliculinidae (Ciliophora), with some comments on the genus Eufolliculina Hadži. Protistologica 19, 235243.
  • 77
    Andrews, E. A. (1923) Folliculinida: Case making, anatomy, and transformation. J. Morphol. 38, 207278.
  • 78
    Song, W. and N. Wilbert (2002) Faunistic studies on marine ciliates from the Antarctic benthic area, including descriptions of one epizoic form, 6 new species, and 2 new genera (Protozoa: Ciliophora). Acta Protozool. 41, 2361.
  • 79
    Marangoni, R., S. Putoni, L. Favati and G. Colombetti (1994) Phototaxis in Fabrea salina. I. Action spectrum determination. J. Photochem. Photobiol. B 23, 149154.
  • 80
    Ellis, J. M. (1937) The morphology, division and conjugation of the salt marsh ciliate, Fabrea salina Henneguy. Univ. Calif. Publ. Zool. 46, 343388.
  • 81
    Van Dover, C. L., E. Z. Szuts, S. C. Chamberlain and J. R. Cann (1989) A novel eye in “eyeless” shrip from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337, 458460.
  • 82
    Pelli, D. G. and S. C. Chamberlain (1989) The visibility of 350°C black-body radiation by the shrimp Rimicaris exoculata and man. Nature 337, 460461.
  • 83
    Hegemann, P., W. Gärtner and R. Uhl (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys. J. 60, 14771489.
  • 84
    Holland, E. M., H. Harz, R. Uhl and P. Hegemann (1997) Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas. Biophys. J. 73, 13951401.
  • 85
    Sineshchekov, O. A. and J. L. Spudich (2005) Sensory rhodopsin signaling in green flagellate algae. In Handbook of Photosensory Receptors (Edited by W. R.Briggs and J. L.Spudich), pp. 2542. Wiley VCH, Weinheim, Germany.
  • 86
    Iseki, M., S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori and M. Watanabe (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415, 10471051.
  • 87
    Sgarbossa, A., S. Lucia, F. Lenci, D. Gioffré and G. Checcucci (1995) Effects of UV-B irradiation on motility and photoresponsiveness of the colored ciliate Blepharisma japonicum. J. Photochem. Photobiol. B 27, 243249.
  • 88
    Ntefidou, M., M. Iseki, M. Watanabe, M. Lebert and D.-P. Häder (2003) Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiol. 133, 15171521.
  • 89
    Matsuoka, T. (1983) Negative phototaxis in Blepharisma japonicum. J. Protozool. 30, 409414.
  • 90
    Menzies, E., N. Das and D. C. Wood (2004) Behaviors producing photodispersal in Stentor coeruleus. Photochem. Photobiol. 80, 401407.
  • 91
    Song, P. S., D.-P. Häder and K. L. Poff (1980) Phototactic orientation by the ciliate, Stentor coeruleus. Photochem. Photobiol. 32, 781786.
  • 92
    Fenchel, T. and B. J. Finlay (1986) Photobehavior of the ciliated protozoan Loxodes: Taxic, transient, and kinetic responses in the presence and absence of oxygen. J. Protozool. 33, 139145.
  • 93
    Fenchel, T. and B. J. Finlay (1984) Geotaxis in the ciliated protozoan Loxodes. J. Exp. Biol. 110, 1733.
  • 94
    Tuffrau, M. (1957) Les facteurs essentials du phototropisme chez le cilié heterotriche Stentor niger. Bull. Soc. Zool. Fr. 82, 354356.
  • 95
    Andrews, E. A. (1946) Folliculinids on a hermit crab from Texas. Trans. Am. Microscop. Soc. 65, 359361.
  • 96
    Hadži, J. (1935) Über die Xenökie der adriatischen Follikuliniden. Congr. Int. Zoologie, Sect. V, Lisbonne, Compte Rend. 2, 924940.
  • 97
    Antonius, A. A. and D. Lipscomb (2001) First protozoan coral-killer identified in the Indo-Pacific. Atoll. Res. Rull. 481, 23.
  • 98
    Johnson, C. H., I. Miwa, T. Kondo and J. W. Hastings (1989) Circadian rhythm of photoaccumulation in Paramecium bursaria. J. Biol. Rhythms 4, 405415.
  • 99
    Niess, D., W. Reisser and W. Weissner (1981) The role of endosymbiotic algae in photoaccumulation of green Paramecium bursaria. Planta 152, 268271.
  • 100
    Derguini, F., P. Mazur, K. Nakanishi, D. M. Starace, J. Saranak and K. W. Foster (1991) All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Photochem. Photobiol. 54, 10171021.
  • 101
    Das, K., A. V. Smirnov, J. Wen, P. Miskovsky and J. W. Petrich (1999) Photophysics of hypericin and hypocrellin A in complex with subcellular components: Interactions with human serum albumin. Photochem. Photobiol. 69, 633645.
  • 102
    Gai, F., M. J. Fehr and J. W. Petrich (1993) Ultrafast excited-state processes in the antiviral agent hypericin. J. Am. Chem. Soc. 115, 33843385.
  • 103
    Gai, F., M. J. Fehr and J. W. Petrich (1994) Role of solvent in excited-state proton-transfer in hypericin. J. Phys. Chem. 98, 83528358.
  • 104
    Gai, F., M. J. Fehr and J. W. Petrich (1994) Observation of excited-state tautomerization in the antiviral agent hypericin and identification of its fluorescent species. J. Phys. Chem. 98, 57845795.
  • 105
    Das, K., D. S. English, M. J. Fehr, A. V. Smirnov and J. W. Petrich (1996) Excited-state processes in polycyclic quinones: The light-induced antiviral agent, hypocrellin, and a comparison with hypericin. J. Phys. Chem. 100, 1827518281.
  • 106
    Das, K., D. S. English and J. W. Petrich (1997) Deuterium isotope effect on the excited-state photophysics of hypocrellin: Evidence for proton or hydrogen atom transfer. J. Phys. Chem. A 101, 32413245.
  • 107
    Das, K., D. S. English and J. W. Petrich (1997) Solvent dependence on the intramolecular excited-state proton or hydrogen atom transfer in hypocrellin. J. Am. Chem. Soc. 119, 27632764.
  • 108
    Das, K., A. V. Smirnov, M. D. Snyder and J. W. Petrich (1998) Picosecond linear dichroism and absorption anisotropy of hypocrellin: Toward a unified picture of the photophysics of hypericin and hypocrellin. J. Phys. Chem. B 102, 60986106.
  • 109
    Das, K., E. Dertz, J. Paterson, W. Zhang, G. A. Kraus and J. W. Petrich (1998) Hypericin, hypocrellin, and model compounds: Steady-state and time-resolved fluorescence anisotropies. J. Phys. Chem. B 102, 14791484.
  • 110
    Das, K., K. D. Ashby, J. Wen and J. W. Petrich (1999) Temperature dependence of the excited-state intramolecular proton transfer reaction in hypericin and hypocrellin A. J. Phys. Chem. B 103, 15811585.
  • 111
    English, D. S., K. Das, K. D. Ashby, J. Park, J. W. Petrich and E. W. Castner (1997) Confirmation of excited-state proton transfer and ground-state heterogeneity in hypericin by fluorescence upconversion. J. Am. Chem. Soc. 119, 1158511590.
  • 112
    English, D. S., K. Das, J. M. Zenner, W. Zhang, G. A. Kraus, R. C. Larock and J. W. Petrich (1997) Hypericin, hypocrellin, and model compounds: Primary photoprocesses of light-induced antiviral agents. J. Phys. Chem. A. 101, 32353240.
  • 113
    English, D. S., W. Zhang, G. A. Kraus and J. W. Petrich (1997) Excited-state photophysics of hypericin and its hexamethoxy analog: Intramolecular proton transfer as a nonradiative process in hypericin. J. Am. Chem. Soc. 119, 29802986.
  • 114
    Smirnov, A. V., K. Das, D. S. English, Z. Wan, G. A. Kraus and J. W. Petrich (1999) Excited-state intramolecular H atom transfer of hypericin and hypocrellin A investigated by fluorescence upconversion. J. Phys. Chem. A 103, 79497957.
  • 115
    Fleming, G. R. (1986) Chemical Applications of Ultrafast Spectroscopy. Oxford University Press, London.
  • 116
    Birks, J. B. (1970) Photophysics of Aromatic Molecules. Wiley-Interscience, London.
  • 117
    Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic, New York.
  • 118
    Chowdhury, P. K., M. Halder, L. Sanders, T. Calhoun, J. Anderson, D. W. Armstrong, X. Song and J. W. Petrich (2004) Dynamic solvation in room temperature ionic liquids. J. Phys. Chem. B 108, 1024510255.
  • 119
    Plaza, P., M. Mahet, O. N. Tchaikovskaya and M. M. Martin (2005) Excitation energy effect on the early photophysics of hypericin in solution. Chem. Phys. Lett. 408, 96100.
  • 120
    Chaloupka, R., F. Sureau, E. Kocisova and J. W. Petrich (1998) Hypocrellin A photosensitization involves an intracellular pH decrease in 3T3 cells. Photochem. Photobiol. 68, 4450.
  • 121
    Peters, T. (1985) Serum albumin. Adv. Protein Chem. 37, 161245.
  • 122
    Fehske, K. J., W. E. Muller and U. Wollertt (1979) The lone tryptophan residue of human serum albumin as part of the specific warfarin binding site. Mol. Pharmacol. 16, 778779.
  • 123
    Davila, J. and A. Harriman (1990) Photochemical and radiolytic oxidation of a zinc porphyrin bound to human serum albumin. J. Am. Chem. Soc. 112, 26862690.
  • 124
    Miskovsky, P., D. Jancura, S. Sanchez-Cortes, E. Kocisova and L. Chinsky (1998) Antiretrovirally active drug hypericin binds the IIA subdomain of human serum albumin: Resonance Raman and surface-enhanced Raman spectroscopy study. J. Am. Chem. Soc. 120, 63746379.
  • 125
    Senthil, V., J. W. Longworth, C. A. Ghiron and L. I. Grossweiner (1992) Photosensitization of aqueous model systems by hypericin. Biochem. Biophys. Acta. 1115, 192200.
  • 126
    Kohler, M., J. Gafert, J. Friedrich, H. Falk and J. Meyer (1996) Hole-burning spectroscopy of proteins in external fields: Human serum albumin complexed with the hypericinate ion. J. Phys. Chem. 100, 85678572.
  • 127
    Falk, H. and J. Meyer (1994) On the homo- and heteroassociation of hypericin. Monatsh. Chem. 125, 753762.
  • 128
    Senthil, V., L. R. Jones, K. Senthil and L. I. Grossweiner (1994) Hypericin photosensitization in aqueous model systems. Photochem. Photobiol. 59, 4047.
  • 129
    Burel, L. and P. Jardon (1996) Homo-association de l’hypericine dans l’eau et consequences pour ses proprietes photodynamiques. Journal de Chimie Physique et de Physico-Chimie Biologique 93, 300316.
  • 130
    Dai, R., T. Yamazaki, I. Yamazaki and P. S. Song (1995) Initial spectroscopic characterization of the ciliate photoreceptor stentorin. Biochim. Biophys. 1231, 5868.
  • 131
    Angelini, N., A. Quaranta, G. Checcucci, P. S. Song and F. Lenci (1998) Electron transfer fluorescence quenching of Blepharisma japonicum photoreceptor pigments. Photochem. Photobiol. 68, 864868.
  • 132
    Adman, E. T., I. Le Trong, R. E. Stenkamp, B. S. Nieslanik, E. C. Dietze, G. Tai, C. Ibarra and W. M. Atkins (2001) Localization of the C-terminus of rat glutathione S-transferase A1-1: Crystal structure of mutants W21F and W21F/F220Y. Proteins: Struc. Func. Gen. 42, 192200.
  • 133
    Lu, W. D. and W. M. Atkins (2004) A novel antioxidant role for ligandin behavior of glutathione S-transferases: Attenuation of the photodynamic effects of hypericin. Biochemistry 43, 1276112769.
  • 134
    Halder, M., P. K. Chowdhury, R. Das, P. Mukherjee, W. M. Atkins and J. W. Petrich (2005) Interaction of glutathione S-transferase with hypericin: A photophysical study. J. Phys. Chem. B 109, 1948419489.
  • 135
    Savikhin, S., N. Tao, P. S. Song and W. S. Struve (1993) Ultrafast pump-probe spectroscopy of the photoreceptor stentorins from the ciliate Stentor coeruleus. J. Phys. Chem. 97, 1237912386.
  • 136
    Mahet, M., P. Plaza, M. M. Martin, G. Checcucci and F. Lenci (2007) Primary photoprocesses in oxyblepharismin interacting with its native protein partner. J. Photochem. Photobiol. A Chem. 185, 345353.
  • 137
    Plaza, P., M. Mahet, M. M. Martin, G. Checcucci and F. Lenci (2007) Target analysis of primary photoprocesses involved in the oxyblepharismin-binding protein. J. Phys. Chem. B 111, 690696.
  • 138
    Giberson, R. T., R. S. Demaree Jr. and R. W. Nordhausen (1997) Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J. Vet. Diagn. Invest. 9, 6167.
  • 139
    Swofford, D. L. (2003) PAUP*. Phylogenic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
  • 140
    Gong, Y. C., Y.-H. Yu, F.-Y. Zhu and W.-S. Feng (2007) Molecular phylogeny of Stentor (Ciliophora: Heterotrichea) based on small subunit ribosomal RNA sequences. J. Eukaryot. Microbiol. 54, 4548.
  • 141
    Jankowski, A. W. (1980) Conspectus of a new system of the phylum Ciliophora. Trudy Zool. Inst. Leningrad 94, 103121. (In Russian).
  • 142
    Stachowicz, J. J. and N. Lindquist (1997) Chemical defense among hydroids on pelagic Sargassum: Predator deterrence and adsorption of solar UV radiation by secondary metabolities. Mar. Ecol. Prog. Ser. 155, 115126.
  • 143
    Häder, D.-P. and M. A. Häder (1991) Effects of solar radiation on motility in Stentor coeruleus. Photochem. Photobiol. 54, 423428.
  • 144
    Kawano, T., T. Kadono, T. Kosaka and H. Hosoya (2004) Green paramecia as an evolutionary winner of oxidative symbiosis: A hypothesis and supporting data. Z. Naturforsch. C 59, 538542.
  • 145
    Repak, A. J. (1972) A redescription of Climacostomum virens (Ehrenberg) Stein and a proposal of a new heterotrich ciliate family, Climacostomidae, fam. n. J. Protozool. 19, 417427.
  • 146
    Reisser, W. and B. Kurmeier (1984) The endosymbiotic unit of Climacostomum virens and Chlorella sp. symbiotic features of the association and host-symbiont regulatory mechanisms. Protistologica 20, 265270.
  • 147
    Hufschmid, J. D. (1984) Bacterial endosymbionts ‘theta’ of the heterotrich ciliate Climacostomum virens. Cell. Mol. Life Sci. 40, 11611163.
  • 148
    Karadzhian, B. P. and A. E. Vishiakov (2002) Endosymbiotic bacteria and their relationship with Chlorella in the ciliate Climacostomum virens. Tsitologiia 44, 12331237 (in Russian).
  • 149
    König, G. M., S. Kehraus, S. F. Seibert, A. Abdel-Kateff and D. Müller (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7, 229238.
  • 150
    Stabell, T., T. Andersen and D. Klaveness (2002) Ecological significance of endosymbionts in a mixotrophic ciliate–an experimental test of a simple model of growth coordination between host and symbiont. J. Plankton Res. 24, 889899.
  • 151
    Terazima, M. N. and T. Harumoto (2004) Defense function of pigment granules in the ciliate Blepharisma japonicum against two predatory protists, Amoeba proteus (Rhizopodea) and Climacostomum virens (Ciliata). Zoolog. Sci. 21, 823828.
  • 152
    Torssell, K. B. G. (1997) Natural Product Chemistry: A Mechanistic, Biosynthetic and Ecological Approach. Swedish Pharmacological Society, Stockholm, Sweden.
  • 153
    Falk, H. and W. Schmitzberger (2004) On the bromination of hypericin: The gymnochrome chromophores. Monatsh. Chem. 124, 7781.
  • 154
    Maron, J. L., M. Vila and J. Arnason (2004) Loss of enemy resistance among introduced populations of St. John’s Wort (Hypericum perforatum). Ecology 85, 32433253.
  • 155
    Piovan, A., R. Filippini, R. Caniato, A. Borsarini, L. Bini Maleci and E. M. Cappelletti (2004) Detection of hypericins in the “red glands” of Hypericum elodes by ESI-MS/MS. Phytochemistry 65, 411414.
  • 156
    Fenical, W. (1982) Natural products chemistry in the marine environment. Science 215, 923928.
  • 157
    Hackett, J. D., D. M. Anderson, E. L. Erdner and D. Bhattacharya (2004) Dinoflagellates: A remarkable evolutionary experiment. Am. J. Bot. 91, 15231534.
  • 158
    Vasquez, M., C. Gruttner, S. Gallagher and E. R. B. Moore (2001) Detection and characterization of toxigenic bacteria associated with Alexandrium catenella and Aulocomya ater contaminated with PSP. J. Shellfish Res. 20, 12451249.
  • 159
    Dunne, R. P. and B. E. Brown (1996) Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs: Results from the central Indian Ocean and Andaman Sea. Mar. Ecol. Prog. Ser. 144, 109118.
  • 160
    Karentz, D. (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine amino acids and scytonemin. In Marine Chemical Ecology (Edited by J. B.McClitock and B. J.Baker). CRC Press, Boca Raton, Florida.
  • 161
    Martini, B., R. Marangoni, D. Gioffré and G. Colombetti (1997) Effect of UV-B irradiation on motility and photomotility of the marine ciliate Fabrea salina. J. Photochem. Photobiol. B 39, 197203.
  • 162
    Lenci, F., G. Checcucci, F. Ghetti, D. Gioffre and A. Sgarbossa (1997) Sensory perception and transduction by the ciliate Blepharisma japonicum. Biochim. Biophys. Acta 1336, 2327.
  • 163
    Shick, J. M. and W. C. Dunlap (2002) Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223262.
  • 164
    Sonntag, B., M. Summerer and R. Sommaruga (2007) Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora). Freshw. Biol. (In press, DOI: DOI: 10:1111/j.1365-2427.2007.01778.x).
  • 165
    Woelfl, S. and W. Geller (2002) Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian Lake (Lake Pirehueico, Chile): Abundance, biomass and symbiotic photosynthesis. Freshw. Biol. 47, 231242.
  • 166
    Laybourn-Parry, J., S. J. Perriss, G. Seaton and J. Rohozinski (1997) A mixotrophic ciliate as a major contributor to plankton photosynthesis in Australian lakes. Limnol. Oceanogr. 42, 14631467.
  • 167
    Lynn, D. H. (2002) Classification of the Phylum Ciliophora, down to genus. Available at: http://www.uoguelph.ca/~ciliates/classification/genera.html. Accessed on 17 July 2007.
  • 168
    Song, W., A. Warren, D. Ji, M. Wang and K. Al-Rasheid (2003) New contributions to two heterotrichous ciliates, Folliculina simplex (Dons, 1917), Condylostoma curva (Burkovsky, 1970) and one licnophorid, Licnophora lyngbycola (Fauré-Fremiet, 1937) (Protozoa, Ciliophora); descriptions of morphology and infraciliature. J. Eukaryot. Microbiol. 50, 449462.
  • 169
    Ji, D., X. Lin and W. Song (2004) Complementary notes on a ‘well known’ marine heterotrichous ciliate, Follliculinopsis producta (Wright, 1859) Fauré-Fremiet, 1936 (Protozoa, Ciliphora). J. Ocean Univ. China 3, 6569.
  • 170
    Song, P. S., I. H. Kim, S. Florell, N. Tamai, T. Yamazaki and I. Yamazaki (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. 2. Primary photoprocess and picosecond time-resolved fluorescence. Biochim. Biophys. Acta 1040, 5865.
  • 171
    White, S. N., A. D. Chave and G. T. Reynolds (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J. Geophys. Res. 107, B1, DOI: 10.1029/02000JB000015 .