To investigate the expression profile of protein tyrosine kinases (PTKs) in normal human epidermal keratinocytes (NHEK) in response to UVA and UVB we employed a reversed transcriptase polymerase chain reaction (PCR) approach using degenerate primers derived from the conserved catalytic domain of PTKs. Quantitative real-time PCR with specific primers was used to confirm the influence of UV on the expression of the identified PTKs. Arg (Abelson-related gene, Abl2) was the PTK with the highest prevalence (30% of all PTKs) and UVA led to a further induction of Arg expression reaching nine-fold mRNA baseline expression at 17 h after irradiation. UVB was followed by an initial downregulation and a subsequent increase in Arg mRNA reaching five-fold baseline levels after 24 h. We conclude that UVA and UVB differentially modify the expression of PTKs in NHEK, and that Arg appears to have a major role in the response of keratinocytes to UV. These results provide a basis for further studies of PTK in UV-induced signaling that regulates protective responses, cell growth and carcinogenesis in the skin.