SEARCH

SEARCH BY CITATION

References

  • 1
    Smith, W. L., D. L. DeWitt and R. M. Garavito (2000) Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145182.
  • 2
    Hull, M. A. (2005) Cyclooxygenase-2: How good is it as a target for cancer chemoprevention? Eur. J. Cancer 41, 18541863.
  • 3
    Subbaramaiah, K. and A. J. Dannenberg (2003) Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 24, 96102.
  • 4
    Trifan, O. C. and T. Hla (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Mol. Med. 7, 207222.
  • 5
    Buckman, S. Y., A. Gresham, P. Hale, G. Hruza, J. Anast, J. Masferrer and A. P. Pentland (1998) COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis 19, 723729.
  • 6
    Funk, C. D. (2001) Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294, 18711875.
  • 7
    Kis, B., J. A. Snipes, T. Gaspar, G. Lenzser, C. D. Tulbert and D. W. Busija (2006) Cloning of cyclooxygenase-1b (putative COX-3) in mouse. Inflamm. Res. 55, 274278.
  • 8
    Chandrasekharan, N. V., H. Dai, K. L. T. Roos, N. K. Evanson, J. Tomsik, T. S. Elton and D. L. Simmons (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl Acad. Sci. USA 99, 1392613931.
  • 9
    Kraemer, K. H. (1997) Sunlight and skin cancer: Another link revealed. Proc. Natl Acad. Sci. USA 94, 1114.
  • 10
    Lu, Y.-P., Y.-R. Lou, P. Yen, D. Mitchell, M.-T. Huang and A. H. Conney (1999) Time course for early adaptive responses to ultraviolet B light in the epidermis of SKH-1 mice. Cancer Res. 59, 45914602.
  • 11
    Ouhtit, A., A. Gorny, H. K. Muller, L. L. Hill, L. Owen-Schaub and H. N. Ananthaswamy (2000) Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis. Am. J. Pathol. 157, 19751981.
  • 12
    Hattori, Y., C. Nishigori, T. Tanaka, K. Uchida, O. Nikaido, T. Osawa, H. Hiai, S. Imamura and S. Toyokuni (1997) 8-Hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J. Invest. Dermatol. 107, 733737.
  • 13
    Wilgus, T. A., A. T. Koki, B. S. Zweifel, D. F. Kusewitt, P. A. Rubal and T. M. Oberyszyn (2003) Inhibition of cutaneous ultraviolet B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol. Carcinog. 38, 4958.
  • 14
    Pearse, A. D., S. A. Gaskell and R. Marks (1987) Epidermal changes in human skin following irradiation with either UVB or UVA. J. Invest. Dermatol. 88, 8387.
  • 15
    Melnikova, V. O., A. Pacifico, S. Chimenti, K. Peris and H. N. Ananthaswamy (2005) Fate of UVB-induced p53 mutations in SKH-hr1 mouse skin after discontinuation of irradiation: Relationship to skin cancer development. Oncogene 24, 70557063.
  • 16
    Berg, R. J. W., H. J. Van Kranen, H. G. Rebel, A. De Vries, W. A. Van Vloten, C. F. Van Kreijl, J. C. Van Der Leun and F. R. De Gruijl (1996) Early p53 alterations in mouse skin carcinogenesis by UVB radiation: Immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc. Natl Acad. Sci. USA 93, 274278.
  • 17
    Rebel, H., L. O. Mosnier, R. J. W. Berg, A. Westerman-de Vries, H. Van Steeg, H. J. Van Kranen and F. R. De Gruijl (2001) Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed mice: Kinetics of induction, effects of DNA repair deficiency, and p53 heterozygosity. Cancer Res. 61, 977983.
  • 18
    Brash, D. E., J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin and J. Pontén (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 88, 1012410128.
  • 19
    An, K. P., M. Athar, X. Tang, S. K. Katiyar, J. Russo, J. Beech, M. Aszterbaum, L. Kopelovich, E. H. Epstein Jr, H. Mukhtar and D. R. Bickers (2002) Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: Implications for therapeutic approaches. Photochem. Photobiol. 76, 7380.
  • 20
    Athar, M., K. P. An, K. D. Morel, A. L. Kim, M. Aszterbaum, J. Longley, E. H. Epstein Jr and D. R. Bickers (2001) Ultraviolet B (UVB)-induced COX-2 expression in murine skin: An immunohistochemical study. Biochem. Biophys. Res. Commun. 280, 10421047.
  • 21
    Tripp, C. S., E. A. G. Blomme, K. S. Chinn, M. M. Hardy, P. LaCelle and A. P. Pentland (2003) Epidermal COX-2 induction following ultraviolet irradiation: Suggested mechanism for the role of COX-2 inhibition in photoprotection. J. Invest. Dermatol. 121, 853861.
  • 22
    Akunda, J. K., K.-S. Chun, A. R. Sessoms, H.-C. Lao, S. M. Fischer and R. Langenbach (2007) Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Mol. Carcinog. 46, 354362.
  • 23
    Fischer, S. M., A. Pavone, C. Mikulec, R. Langenbach and J. E. Rundhaug (2007) Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Mol. Carcinog. 46, 363371.
  • 24
    Xu, Y., Y. Shao, J. J. Voorhees and G. J. Fisher (2006) Oxidative inhibition of receptor-type protein-tyrosine phosphatase κ by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes. J. Biol. Chem. 281, 2738927397.
  • 25
    Xu, Y., J. J. Voorhees and G. J. Fisher (2006) Epidermal growth factor receptor is a critical mediator of ultraviolet B irradiation-induced signal transduction in immortalized human keratinocyte HaCaT cells. Am. J. Pathol. 169, 823830.
  • 26
    Wan, Y. S., Z. O. Wang, Y. Shao, J. J. Voorhees and G. J. Fisher (2001) Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int. J. Oncol. 18, 461466.
  • 27
    Bachelor, M. A., S. J. Cooper, E. T. Sikorski and G. T. Bowden (2005) Inhibition of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase decreases UVB-induced activator protein-1 and cyclooxygenase-2 in a SKH-1 hairless mouse model. Mol. Cancer Res. 3, 9099.
  • 28
    Tang, Q., W. Chen, M. S. Gonzales, J. Finch, H. Inoue and G. T. Bowden (2001) Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene 20, 51645172.
  • 29
    Tang, Q., M. Gonzales, H. Inoue and G. T. Bowden (2001) Roles of Akt and glycogen synthase kinase 3β in the ultraviolet B induction of cyclooxygenase-2 transcription in human keratinocytes. Cancer Res. 61, 43294332.
  • 30
    Fritsche, E., C. Schäfer, C. Calles, T. Bernsmann, T. Bernshausen, M. Wurm, U. Hübenthal, J. E. Cline, H. Hajimiragha, P. Schroeder, L.-O. Klotz, A. Rannug, P. Fürst, H. Hanenberg, J. Abel and J. Krutmann (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmic target for ultraviolet B radiation. Proc. Natl Acad. Sci. USA 104, 88518856.
  • 31
    Agostinis, P., M. Garmyn and A. Van Laethem (2007) The aryl hydrocarbon receptor: An illuminating effector of UVB response. Available at: http://www.stke.org/cgi/content/full/2007/403/pe49.
  • 32
    Van Dross, R. T., X. Hong, S. Essengue, S. M. Fischer and J. C. Pelling (2007) Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: Role of USF transcription factors. Mol. Carcinog. 46, 303314.
  • 33
    Kim, Y. and S. M. Fischer (1998) Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J. Biol. Chem. 273, 2768627694.
  • 34
    Han, J. A., J.-I. Kim, P. P. Ongusaha, D. H. Hwang, L. R. Ballou, A. Mahale, S. A. Aaronson and S. W. Lee (2002) p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J. 21, 56355644.
  • 35
    Mahns, A., R. Wolber, F. Stäb, L. O. Klotz and H. Sies (2004) Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis. Photochem. Photobiol. Sci. 3, 257262.
  • 36
    Krutmann, J. (2006) The interaction of UVA and UVB wavebands with particular emphasis on signalling. Prog. Biophys. Mol. Biol. 92, 105107.
  • 37
    Bachelor, M. A. and G. T. Bowden (2004) UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 14, 131138.
  • 38
    Fischer, S. M., H.-H. Lo, G. B. Gordon, K. Seibert, G. Kelloff, R. A. Lubet and C. J. Conti (1999) Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol. Carcinog. 25, 231240.
  • 39
    Pentland, A. P., J. W. Schoggins, G. A. Scott, K. N. M. Khan and R. Han (1999) Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20, 19391944.
  • 40
    Fischer, S. M., C. J. Conti, J. Viner, C. M. Aldaz and R. A. Lubet (2003) Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis 24, 945952.
  • 41
    Wilgus, T. A., A. T. Koki, B. S. Zweifel, P. A. Rubal and T. M. Oberyszyn (2003) Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Mol. Carcinog. 38, 3339.
  • 42
    Wilgus, T. A., M. S. Ross, M. L. Parrett and T. M. Oberyszyn (2000) Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins Other Lipid Mediat. 62, 367384.
  • 43
    Butler, G. J., R. Neale, A. C. Green, N. Pandeya and D. C. Whiteman (2005) Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin. J. Am. Acad. Dermatol. 53, 966972.
  • 44
    Grösch, S., T. J. Maier, S. Schiffmann and G. Geisslinger (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J. Natl Cancer Inst. 98, 736747.
  • 45
    Tjiu, J.-W., Y.-H. Liao, S.-J. Lin, Y.-L. Huang, W.-L. Tsai, C.-Y. Chu, M.-L. Kuo and S.-H. Jee (2006) Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis. J. Invest. Dermatol. 126, 11431151.
  • 46
    Morham, S. G., R. Langenbach, C. D. Loftin, H. F. Tiano, N. Vouloumanos, J. C. Jennette, J. F. Mahler, K. D. Kluckman, A. Ledford, C. A. Lee and O. Smithies (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83, 473482.
  • 47
    Dinchuk, J. E., B. D. Car, R. J. Focht, J. J. Johnston, B. D. Jaffee, M. B. Covington, N. R. Contel, V. M. Eng, R. J. Collins, P. M. Czerniak, S. A. Gorry and J. M. Trzaskos (1995) Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378, 406409.
  • 48
    Pentland, A. P., G. Scott, J. VanBuskirk, C. Tanck, G. LaRossa and S. Brouxhon (2004) Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Res. 64, 55875591.
  • 49
    Bol, D. K., R. B. Rowley, C.-P. Ho, B. Pilz, J. Dell, M. Swerdel, K. Kiguchi, S. Muga, R. Klein and S. M. Fischer (2002) Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Res. 62, 25162521.
  • 50
    Tsuboi, K., Y. Sugimoto and A. Ichikawa (2002) Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat. 68-69, 535556.
  • 51
    Tober, K. L., J. M. Thomas-Ahner, T. Maruyama and T. M. Oberyszyn (2007) Possible cross-regulation of the E prostanoid receptors. Mol. Carcinog. 46, 711715.
  • 52
    Lee, J. L., A. Kim, L. Kopelovich, D. R. Bickers and M. Athar (2005) Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. J. Invest. Dermatol. 125, 818825.
  • 53
    Konger, R. L., S. D. Billings, A. B. Thompson, A. Morimiya, J. H. Ladenson, Y. Landt, A. P. Pentland and S. Badve (2005) Immunolocalization of low-affinity prostaglandin E2 receptors, EP1 and EP2, in adult human epidermis. J. Invest. Dermatol. 124, 965970.
  • 54
    Konger, R. L., S. Brouxhon, S. Partillo, J. VanBuskirk and A. P. Pentland (2005) The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Exp. Dermatol. 14, 914922.
  • 55
    Tober, K. L., T. A. Wilgus, D. F. Kusewitt, J. M. Thomas-Ahner, T. Maruyama and T. M. Oberyszyn (2006) Importance of the EP1 receptor in cutaneous UVB-induced inflammation and tumor development. J. Invest. Dermatol. 126, 205211.
  • 56
    Kabashima, K., M. Nagamachi, T. Honda, C. Nishigori, Y. Miyachi, Y. Tokura and S. Narumiya (2007) Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Lab. Invest. 87, 4955.
  • 57
    Brouxhon, S., R. L. Konger, J. VanBuskirk, T.-j. Sheu, J. Ryan, B. Erdle, A. Almudevar, R. M. Breyer, G. Scott and A. P. Pentland (2007) Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J. Invest. Dermatol. 127, 439446.
  • 58
    Chun, K.-S., J. K. Akunda and R. Langenbach (2007) Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Res. 67, 20152021.
  • 59
    Brouxhon, S., S. Kyrkanides, M. K. O’Banion, R. Johnson, D. A. Pearce, G. M. Centola, J.-n. H. Miller, K. H. McGrath, B. Erdle, G. Scott, S. Schneider, J. VanBuskirk and A. P. Pentland (2007) Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: Loss of E-cadherin via a prostaglandin E2-EP2-dependent posttranslational mechanism. Cancer Res. 67, 76547664.
  • 60
    Yona, D. and N. Arber (2006) Coxibs and cancer prevention. J. Cardiovasc. Pharmacol. 47, S76S81.