• 1
    Long, S. P., E. A. Ainsworth, A. D. Leakey, J. Nosberger and D. R. Ort (2006) Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 19181921.
  • 2
    Long, S. P., X.-G. Zhu, S. L. Naidu and D. R. Ort (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Env. 29, 315330.
  • 3
    Zhu, X.-G., E. De Sturler and S. P. Long (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513526.
  • 4
    Portis, A. R. Jr and M. A. Parry (2007) Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): A historical perspective. Photosynth. Res. 94, 121143.
  • 5
    Ellis, R. J. (1979) The most abundant protein in the world. Trends Biochem. Sci. 4, 241244.
  • 6
    Kane, H. J., J. M. Wilkin, A. R. Portis and T. John Andrews (1998) Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate. Plant Physiol. 117, 10591069.
  • 7
    Portis, A. (2003) Rubisco activase - Rubisco’s catalytic chaperone. Photosynth. Res. 75, 1127.
  • 8
    Reumann, S. and A. P. M. Weber (2006) Plant peroxisomes respire in the light: Some gaps of the photorespiratory C2 cycle have become filled-Others remain. Biochim. Biophys. Acta 1763, 14961510.
  • 9
    Laing, W. A., W. L. Ogren and R. H. Hageman (1974) Regulation of Soybean Net Photosynthetic CO2 Fixation by the Interaction of CO2, O2, and Ribulose 1,5-Diphosphate Carboxylase. Plant Physiol. 54, 678685.
  • 10
    Wingler, A., P. J. Lea, W. P. Quick and R. C. Leegood (2000) Photorespiration: Metabolic pathways and their role in stress protection. Philos. Trans. R. Soc. Lond. 355, 15171529.
  • 11
    Raines, C. (2003) The Calvin cycle revisited. Photosynth. Res. 75, 110.
  • 12
    Raines, C. A. (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant, Cell and Environment 29, 331339.
  • 13
    Haehnel, W. (1984) Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35, 659693.
  • 14
    Chida, H., A. Nakazawa, H. Akazaki, T. Hirano, K. Suruga, M. Ogawa, T. Satoh, K. Kadokura, S. Yamada, W. Hakamata, K. Isobe, T.-i. Ito, R. Ishii, T. Nishio, K. Sonoike and T. Oku (2007) Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 48, 948957.
  • 15
    Howe, C. J., B. G. Schlarb-Ridley, J. Wastl, S. Purton and D. S. Bendall (2006) The novel cytochrome c6 of chloroplasts: A case of evolutionary bricolage? J. Exp. Bot. 57, 1322.
  • 16
    Rodriguez, R. E., A. Lodeyro, H. O. Poli, M. Zurbriggen, M. Peisker, J. F. Palatnik, V. B. Tognetti, H. Tschiersch, M.-R. Hajirezaei, E. M. Valle and N. Carrillo (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol. 143, 639649.
  • 17
    Hajirezaei, M.-R., M. Peisker, H. Tschiersch, J. F. Palatnik, E. M. Valle, N. Carrillo and U. Sonnewald (2002) Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant J. 29, 281293.
  • 18
    Tcherkez, G. G., G. D. Farquhar and T. J. Andrews (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 72467251.
  • 19
    Uemura, K., Anwaruzzaman, S. Miyachi and A. Yokota (1997) Ribulose-1,5-Bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem. Biophys. Res. Comm. 233, 568571.
  • 20
    Galmes, J., J. Flexas, A. J. Keys, J. Cifre, R. A. C. Mitchell, P. J. Madgwick, R. P. Haslam, H. Medrano and M. A. J. Parry (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Env. 28, 571579.
  • 21
    Parry, M. A. J., P. J. Madgwick, J. F. C. Carvalho and P. J. Andralojc (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J. Agric. Sci. 145, 3143.
  • 22
    Parry, M. A. J., P. J. Andralojc, R. A. C. Mitchell, P. J. Madgwick and A. J. Keys (2003) Manipulation of Rubisco: The amount, activity, function and regulation. J. Exp. Bot. 54, 13211333.
  • 23
    Parikh, M. R., D. N. Greene, K. K. Woods and I. Matsumura (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Prot. Eng. Des. Select. 19, 113119.
  • 24
    Gatenby, A. A., S. M. Vies and S. J. Rothstein (1987) Co-expression of both the maize large and wheat small subunit genes of ribulose-bisphosphate carboxylase in Escherichia coli. Eur. J. Biochem. 168, 227231.
  • 25
    Spreitzer, R. J. and M. E. Salvucci (2002) RUBISCO: Structure, regulatory interactions, and possibilities for a better Enzyme. Annu. Rev. Plant Biol. 53, 449475.
  • 26
    Mullet, J. C. (1997) Molecular Biology of photosynthesis in higher plants. In Plant Metabolism (Edited by D. T.Dennis, D. H.Turpin, D. D.Lefebvre and D. B.Layzell), pp. 260273. Addison Wesley Longman Limited, Essex, UK.
  • 27
    Whitney, S. M. and T. J. Andrews (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl Acad. Sci. USA 98, 1473814743.
  • 28
    Whitney, S. M., P. Baldet, G. S. Hudson and T. J. Andrews (2001) Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26, 535547.
  • 29
    Kanevski, I. and P. Maliga (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc. Natl Acad. Sci. USA 91, 19691973.
  • 30
    Sharwood, R. E., S. Von Caemmerer, P. Maliga and S. M. Whitney (2007) The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol. 146, 8396.
  • 31
    Wostrikoff, K. and D. Stern (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc. Natl Acad. Sci. USA 104, 64666471.
  • 32
    Whitney, S. M. and R. E. Sharwood (2007) Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance. J. Biol. Chem. 282, 38093918.
  • 33
    Dhingra, A., A. Portis and H. Daniell (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc. Natl Acad. Sci. USA 101, 63156320.
  • 34
    Whitney, S. M. and R. E. Sharwood (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J. Exp. Bot. 59, 19091921.
  • 35
    Portis, A. R. Jr, C. Li, D. Wang and M. E. Salvucci (2007) Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot. 58, 15971604.
  • 36
    Feller, U., S. J. Crafts-Brandner and M. E. Salvucci (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 116, 539546.
  • 37
    Jin, S. H., J. Hong, X. Q. Li and D. A. Jiang (2006) Antisense inhibition of Rubisco activase increases Rubisco content and alters the proportion of Rubisco activase in stroma and thylakoids in chloroplasts of rice leaves. Ann. Bot. 97, 739744.
  • 38
    Salvucci, M. E., B. P. DeRidder and A. R. Portis Jr (2006) Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J. Exp. Bot. 57, 37933799.
  • 39
    Crafts-Brandner, S. J. and M. E. Salvucci (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl Acad. Sci. USA 97, 1343013435.
  • 40
    Kurek, I., T. K. Chang, S. M. Bertain, A. Madrigal, L. Liu, M. W. Lassner and G. Zhu (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19, 32303241.
  • 41
    Wang, Z.-Y., G. W. Snyder, B. D. Esau, A. R. Portis Jr and W. L. Ogren (1992) Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol. 100, 18581862.
  • 42
    Edwards, G. E., V. R. Franceschi and E. V. Voznesenskaya (2004) Single-cell C4 photosynthesis versus the dual cell (Kranz) paradigm Annu. Rev. Plant Biol. 55, 173196.
  • 43
    Von Caemmerer, S. and R. T. Furbank (2003) The C4 pathway: An efficient CO2 pump. Photosynth. Res. 77, 191207.
  • 44
    Ku, M. S., S. Agarie, M. Nomura, H. Fukayama, H. Tsuchida, K. Ono, S. Hirose, S. Toki, M. Miyao and M. Matsuoka (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotech. 17, 7680.
  • 45
    Fukayama, H., M. D. Hatch, T. Tamai, H. Tsuchida, S. Sudoh, R. T. Furbank and M. Miyao (2003) Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth. Res. 77, 227239.
  • 46
    Lipka, V., R. E. Häusler, T. Rademacher, J. Li, H. J. Hirsch and F. Kreuzaler (1999) Solanum tuberosum double transgenic expressing phosphoenolpyruvate carboxylase and NADP-malic enzyme display reduced electron requirement for CO2 fixation. Plant Sci. 144, 93105.
  • 47
    Mitchell, P. L. and J. E. Sheehy (2006) Supercharging rice photosynthesis to increase yield. New Phytol. 171, 688693.
  • 48
    Normile, D. (2006) Consortium aims to supercharge rice photosynthesis. Science 313, 423.
  • 49
    Von Caemmerer, S. (2003) C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Env. 26, 11911197.
  • 50
    Kebeish, R., M. Niessen, K. Thiruveedhi, R. Bari, H.-J. Hirsch, R. Rosenkranz, N. Stäbler, B. Schönfeld, F. Kreuzaler and C. Peterhänsel (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotech. 25, 593599.
  • 51
    Lord, J. M. (1972) Glycolate oxidoreductase in Escherichia coli. Biochim. Biophys. Acta 267, 227237.
  • 52
    Eisenhut, M., S. Kahlon, D. Hasse, R. Ewald, J. Lieman-Hurwitz, T. Ogawa, W. Ruth, H. Bauwe, A. Kaplan and M. Hagemann (2006) The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol. 142, 333342.
  • 53
    Kisaki, T. and N. E. Tolbert (1969) Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 44, 242250.
  • 54
    Zelitch, I. (1972) The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biophys. 150, 698707.
  • 55
    Nakamura, Y., S. Kanakagiri, K. Van, W. He and M. Spalding (2005) Disruption of the glycolate dehydrogenase gene in the high-CO2-requiring mutant HCR89 of Chlamydomonas reinhardtii. Can. J. Bot. 83, 820833.
  • 56
    Bari, R., R. Kebeish, R. Kalamajka, T. Rademacher and C. Peterhansel (2004) A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J. Exp. Bot. 55, 623630.
  • 57
    Niessen, M., K. Thiruveedhi, R. Rosenkranz, R. Kebeish, H.-J. Hirsch, F. Kreuzaler and C. Peterhansel (2007) Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J. Exp. Bot. 58, 27092715.
  • 58
    Harrison, E. P., H. Olcer, J. C. Lloyd, S. P. Long and C. A. Raines (2001) Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J. Exp. Bot. 52, 17791784.
  • 59
    Olcer, H., J. C. Lloyd and C. A. Raines (2001) Photosynthetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plants. Plant Physiol. 125, 982989.
  • 60
    Miyagawa, Y., M. Tamoi and S. Shigeoka (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotech. 19, 965969.
  • 61
    Yabuta, Y., M. Tamoi, K. Yamamoto, K.-I. Tomizawa, A. Yokota and S. Shigeoka (2008) Molecular designing of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol. 49, 375385.
  • 62
    Lefebvre, S., T. Lawson, O. V. Zakhleniuk, J. C. Lloyd and C. A. Raines (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451460.
  • 63
    Tamoi, M., M. Nagaoka, Y. Miyagawa and S. Shigeoka (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47, 380390.
  • 64
    Feng, L., K. Wang, Y. Li, Y. Tan, J. Kong, H. Li, Y. Li and Y. Zhu (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep. 26, 16351646.
  • 65
    Ercolano, M. R., A. Ballvora, J. Paal, H. H. Steinbiss, F. Salamini and C. Gebhardt (2004) Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol. Breeding 13, 1522.
  • 66
    Liu, Y.-G., Y. Shirano, H. Fukaki, Y. Yanai, M. Tasaka, S. Tabata and D. Shibata (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl Acad. Sci. USA 96, 65356540.
  • 67
    Gibson, D. G., G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas, M. A. Algire, C. Merryman, L. Young, V. N. Noskov, J. I. Glass, J. C. Venter, C. A. Hutchison III and H. O. Smith (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 12151220.
  • 68
    Chen, Q.-J., H.-M. Zhou, J. Chen and X.-C. Wang (2006) A Gateway-based platform for multigene plant transformation. Plant Mol. Biol. 62, 927936.