• 1
    Murata, N., S. Takahashi, Y. Nishiyama and S. I. Allakhverdiev (2007) Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta-Bioenerget. 1767, 414421.
  • 2
    Bailey, S., R. Walters, S. Jansson and P. Horton (2001) Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses. Planta 213, 794801.
  • 3
    Walters, R. and P. Horton (1994) Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta 195, 248256.
  • 4
    Anderson, J., W. Chow and D. Goodchild (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol. 15, 1126.
  • 5
    Anderson, J., W. Chow and Y. Park (1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynth. Res. 46, 129139.
  • 6
    Walters, R. (2005) Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56, 435447.
  • 7
    Niyogi, K. (2000) Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455460.
  • 8
    Horton, P., A. Ruban and R. Walters (1996) Regulation of light harvesting in green plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 655684.
  • 9
    Finazzi, G., G. Johnson, L. Dall’Osto, F. Zito, G. Bonente, R. Bassi and F. Wollman (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45, 14901498.
  • 10
    Grossman, A., D. Bhaya, K. Apt and D. Kehoe (1995) Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution. Ann. Rev. Genet. 29, 231287.
  • 11
    Van Amerongen, H. and R. Van Grondelle (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B. 105, 604617.
  • 12
    Horton, P. and A. Ruban (2005) Molecular design of the photosystem II light-harvesting antenna: Photosynthesis and photoprotection. J. Exp. Bot. 56, 365373.
  • 13
    Müller, P., X. Li and K. Niyogi (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 15581566.
  • 14
    Krieger-Liszkay, A. (2005) Singlet oxygen production in photosynthesis. J. Exp. Bot. 56, 337346.
  • 15
    Krause, G. and E. Weis (1991) Chlorophyll fluorescence and photosynthesis: The basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313349.
  • 16
    Maxwell, K. and G. Johnson (2000) Chlorophyll fluorescence–A practical guide. J. Exp. Bot. 51, 659668.
  • 17
    Campbell, D., V. Hurry, A. Clarke, P. Gustafsson and G. Oquist (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667683.
  • 18
    Noctor, G., D. Rees, A. Young and P. Horton (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochim. Biophys. Acta. Bioenerget. 1057, 320330.
  • 19
    Demmig-Adams, B. and W. Adams (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1, 2126.
  • 20
    Li, X., O. Björkman, C. Shih, A. Grossman, M. Rosenquist, S. Jansson and K. Niyogi (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391395.
  • 21
    Arsalane, W., B. Rousseau and J. Duval (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: Competition between photoprotection and photoinhibition. Photochem. Photobiol. 60, 237243.
  • 22
    Grossman, A., M. Schaefer, G. Chiang and J. Collier (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725749.
  • 23
    Sidler, W. (1994) Phycobilisome and phycobiliprotein structures. Mol. Biol. Cyanobacteria 1, 139216.
  • 24
    Liu, L., X. Chen, Y. Zhang and B. Zhou (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. BBA-Bioenerget. 1708, 133142.
  • 25
    Joshua, S. and C. Mullineaux (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol. 135, 18.
  • 26
    Bald, D., J. Kruip and M. Rögner (1996) Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res. 49, 103118.
  • 27
    Mullineaux, C. W. (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth. Res. 95, 175182.
  • 28
    Cadoret, J. C., R. Demouliere, J. Lavaud, H. J. Van Gorkom, J. Houmard and A. L. Etienne (2004) Dissipation of excess energy triggered by blue light in cyanobacteria with CP43′ (isiA). Biochim. Biophys. Acta 1659, 100104.
  • 29
    Manodori, A. and A. Melis (1986) Cyanobacterial acclimation to photosystem I or photosystem II light. Plant Physiol. 82, 185189.
  • 30
    Allen, J., C. Mullineaux, C. Sanders and A. Melis (1989) State transitions, photosystem stoichiometry adjustment and non-photochemical quenching in cyanobacterial cells acclimated to light absorbed by photosystem I or photosystem II. Photosynth. Res. 22, 157166.
  • 31
    Niyogi, K., A. Grossman and O. Björkman (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell Online 10, 11211134.
  • 32
    Niyogi, K. K., O. Bjorkman and A. R. Grossman (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9, 13691380.
  • 33
    Niyogi, K. K., O. Bjorkman and A. R. Grossman (1997) The roles of specific xanthophylls in photoprotection. Proc. Natl Acad. Sci. USA 94, 1416214167.
  • 34
    El Bissati, K., E. Delphin, N. Murata, A. Etienne and D. Kirilovsky (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: Involvement of two different mechanisms. Biochim. Biophys. Acta 1457, 229242.
  • 35
    Mullineaux, C. and J. Allen (1990) State 1–State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynth. Res. 23, 297311.
  • 36
    Boekema, E., A. Hifney, A. Yakushevska, M. Piotrowski, W. Keegstra, S. Berry, K. Michel, E. Pistorius and J. Kruip (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745748.
  • 37
    Bibby, T., J. Nield, F. Partensky and J. Barber (2001) Antenna ring around photosystem I. Nature 413, 590.
  • 38
    Kouril, R., A. Arteni, J. Lax, N. Yeremenko, S. D’Haene, M. Rögner, H. Matthijs, J. Dekker and E. Boekema (2005) Structure and functional role of supercomplexes of IsiA and Photosystem I in cyanobacterial photosynthesis. FEBS Lett. 579, 32533257.
  • 39
    Bailey, S., N. Mann, C. Robinson and D. Scanlan (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett. 579, 275280.
  • 40
    Park, Y. I., S. Sandstrom, P. Gustafsson and G. Oquist (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation. Mol. Microbiol. 32, 123129.
  • 41
    Sandstrom, S., Y. I. Park, G. Oquist and P. Gustafsson (2001) CP43′, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem. Photobiol. 74, 431437.
  • 42
    Rakhimberdieva, M., I. Stadnichuk, I. Elanskaya and N. Karapetyan (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 574, 8588.
  • 43
    Joshua, S., S. Bailey, N. Mann and C. Mullineaux (2005) Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol. 138, 15771585.
  • 44
    Wilson, A., G. Ajlani, J. M. Verbavatz, I. Vass, C. A. Kerfeld and D. Kirilovsky (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18, 9921007.
  • 45
    Kerfeld, C. A., M. R. Sawaya, V. Brahmandam, D. Cascio, K. K. Ho, C. C. Trevithick-Sutton, D. W. Krogmann and T. O. Yeates (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11, 5565.
  • 46
    Polivka, T., C. Kerfeld, T. Pascher and V. Sundström (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44, 39944003.
  • 47
    Karapetyan, N. (2007) Non-photochemical quenching of fluorescence in cyanobacteria. Biochemistry (Moscow) 72, 11271135.
  • 48
    Rakhimberdieva, M. G., D. V. Vavilin, W. F. Vermaas, I. V. Elanskaya and N. V. Karapetyan (2007) Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767, 757765.
  • 49
    Wilson, A., C. Boulay, A. Wilde, C. A. Kerfeld and D. Kirilovsky (2007) Light-induced energy dissipation in iron-starved cyanobacteria: Roles of OCP and IsiA proteins. Plant Cell 19, 656672.
  • 50
    Yeremenko, N., R. Kouril, J. A. Ihalainen, S. D’Haene, N. Van Oosterwijk, E. G. Andrizhiyevskaya, W. Keegstra, H. L. Dekker, M. Hagemann, E. J. Boekema, H. C. Matthijs and J. P. Dekker (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43, 1030810313.
  • 51
    Ihalainen, J. A., S. D’Haene, N. Yeremenko, H. Van Roon, A. A. Arteni, E. J. Boekema, R. Van Grondelle, H. C. Matthijs and J. P. Dekker (2005) Aggregates of the chlorophyll-binding protein IsiA (CP43′) dissipate energy in cyanobacteria. Biochemistry 44, 1084610853.
  • 52
    Partensky, F., W. R. Hess and D. Vaulot (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106127.
  • 53
    Beardall, J., E. Young and S. Roberts (2001) Approaches for determining phytoplankton nutrient limitation. Aquat. Sci.-Res. Across Boundaries 63, 4469.
  • 54
    Strzepek, R. and P. Harrison (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689692.
  • 55
    Melis, A. (1989) Spectroscopic methods in photosynthesis: Photosystem stoichiometry and chlorophyll antenna size. Philos. Trans. Roy. Soc. Lond. Ser. B. Biol. Sci. 323, 397409.
  • 56
    Munekage, Y., M. Hashimoto, C. Miyake, K. Tomizawa, T. Endo and M. Tasaka (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579582.
  • 57
    Bailey, S., A. Melis, K. Mackey, P. Cardol, G. Finazzi, G. Dijken, G. Berg, K. Arrigo, J. Shrager and A. Grossman (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. BBA-Bioenerget. 1777, 269276.
  • 58
    Josse, E., J. Alcaraz, A. Laboure and M. Kuntz (2003) In vitro characterization of a plastid terminal oxidase (PTOX) FEBS J. 270, 37873794.