• 1
    Pebay-Peyroula, E., G. Rummel, J. P. Rosenbusch and E. M. Landau (1997) X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipid cubic phases. Science 277, 16761681.
  • 2
    Chang, G., R. H. Spencer, A. T. Lee, M. T. Barclay and D. C. Rees (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282, 22202226.
  • 3
    Palczewski, K., T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739745.
  • 4
    Toyoshima, C., M. Nakasako, H. Nomura and H. Ogawa (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647655.
  • 5
    Teller, D. C., T. Okada, C. A. Behnke, K. Palczewski and R. E. Stenkamp (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 77617772.
  • 6
    Okada, T., Y. Fujiyoshi, M. Silow, J. Navarro, E. M. Landau and Y. Shichida (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 59825987.
  • 7
    Toyoshima, C. and H. Nomura (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605611.
  • 8
    Luecke, H. and J. K. Lanyi (2003) Structural clues to the mechanism of ion pumping in bacteriorhodopsin. Adv. Prot. Chem. 63, 111130.
  • 9
    Abramson, J., I. Smirnova, V. Kasho, G. Verner, H. R. Kaback and S. Iwata (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610615.
  • 10
    Okada, T., M. Sugihara, A.-N. Bondar, M. Elstner, P. Entel and V. Buss (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571583.
  • 11
    Li, J., P. C. Edwards, M. Burghammer, C. Villa and G. F. X. Schertler (2004) Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 14091438.
  • 12
    Salom, D., D. T. Lodowski, R. E. Stenkamp, I. Le Trong, M. Golczak, B. Jastrzebska, T. Harris, J. A. Ballesteros and K. Palczewski (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 1612316128.
  • 13
    Rasmussen, S. G. F., H.-J. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian, P. C. Edwards, M. Burghammer, V. R. P. Ratnala, R. Sanishvili, R. F. Fischetti, G. F. X. Schertler, W. I. Weis and B. K. Kobilka (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383387.
  • 14
    Standfuss, J., G. Xie, P. C. Edwards, M. Burghammer, D. D. Oprian and G. F. X. Schertler (2007) Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372, 11791188.
  • 15
    Drews, J. (2000) Drug discovery: A historical perspective. Science 287, 19601964.
  • 16
    Watts, A. (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4, 555568.
  • 17
    Ulrich, A. S., I. Wallat, M. P. Heyn and A. Watts (1995) Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Nat. Struct. Biol. 2, 190192.
  • 18
    Moltke, S., A. A. Nevzorov, N. Sakai, I. Wallat, C. Job, K. Nakanishi, M. P. Heyn and M. F. Brown (1998) Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium NMR spectra of oriented purple membranes. Biochemistry 37, 1182111835.
  • 19
    Moltke, S. M., I. Wallat, N. Sakai, K. Nakanishi, M. F. Brown and M. P. Heyn (1999) The angles between the C1-, C5-, and C9-methyl bonds of the retinylidene chromophore and the membrane normal increase in the M intermediate of bacteriorhodopsin: Direct determination with solid-state 2H NMR. Biochemistry 38, 1176211772.
  • 20
    Salgado, G. F. J., A. V. Struts, K. Tanaka, N. Fujioka, K. Nakanishi and M. F. Brown (2004) Deuterium NMR structure of retinal in the ground state of rhodopsin. Biochemistry 43, 1281912828.
  • 21
    Patel, A. B., E. Crocker, M. Eilers, A. Hirshfeld, M. Sheves and S. O. Smith (2004) Coupling of retinal isomerization to the activation of rhodopsin. Proc. Natl Acad. Sci. USA 101, 1004810053.
  • 22
    Hiller, M., L. Krabben, K. R. Vinothkumar, F. Castellani, B.-J. Van Rossum, W. Kühlbrandt and H. Oschkinat (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. ChemBioChem 6, 16791684.
  • 23
    Lange, A., K. Giller, S. Hornig, M.-F. Martin-Eauclaire, O. Pongs, S. Becker and M. Baldus (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959962.
  • 24
    Salgado, G. F. J., A. V. Struts, K. Tanaka, S. Krane, K. Nakanishi and M. F. Brown (2006) Solid-state 2H NMR structure of retinal in metarhodopsin I. J. Am. Chem. Soc. 128, 1106711071.
  • 25
    Etzkorn, M., S. Martell, O. C. Andronesi, K. Seidel, M. Engelhard and M. Baldus (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 46, 459462.
  • 26
    Varga, K., L. Tian and A. E. McDermott (2007) Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. Biochim. Biophys. Acta 1774, 16041613.
  • 27
    Williamson, P. T. F., A. Verhoeven, K. W. Miller, B. H. Meier and A. Watts (2007) The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 104, 1803118036.
  • 28
    Hiller, M., V. A. Higman, S. Jehle, B.-J. Van Rossum, W. Kühlbrandt and H. Oschkinat (2008) [2,3-13C]-labeling of aromatic residues—Getting a head start in the magic-angle-spinning NMR assignment of membrane proteins. J. Am. Chem. Soc. 130, 408409.
  • 29
    Brown, M. F., S. Lope-Piedrafita, G. V. Martinez and H. I. Petrache (2006) Solid-state deuterium NMR spectroscopy of membranes. In Modern Magnetic Resonance (Edited by G. A.Webb), pp. 245256. Springer, Heidelberg.
  • 30
    Petrache, H. I. and M. F. Brown (2007) X-ray scattering and solid-state deuterium nuclear magnetic resonance probes of structural fluctuations in lipid membranes. In Methods in Molecular Biology (edited by A. M.Dopico), pp. 341353. Humana Press, Totowa, NJ.
  • 31
    Brown, M. F. (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159180.
  • 32
    Mitchell, D. C., S. L. Niu and B. J. Litman (2001) Optimization of receptor-G protein coupling by bilayer lipid composition I—Kinetics of rhodopsin-transducin binding. J. Biol. Chem. 276, 4280142806.
  • 33
    Botelho, A. V., N. J. Gibson, Y. Wang, R. L. Thurmond and M. F. Brown (2002) Conformational energetics of rhodopsin modulated by nonlamellar forming lipids. Biochemistry 41, 63546368.
  • 34
    Botelho, A. V., T. Huber, T. P. Sakmar and M. F. Brown (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys. J. 91, 44644477.
  • 35
    Fanelli, F. and P. G. De Benedetti (2005) Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem. Rev. 105, 32973351.
  • 36
    Nakanishi, K. and R. Crouch (1995) Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins. Isr. J. Chem. 35, 253272.
  • 37
    Knierim, B., K. P. Hofmann, O. P. Ernst and W. L. Hubbell (2007) Sequence of late molecular events in the activation of rhodopsin. Proc. Natl Acad. Sci. USA 104, 2029020295.
  • 38
    Altenbach, C., A. K. Kusnetzow, O. P. Ernst, K. P. Hofmann and W. L. Hubbell (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA 105, 74397444.
  • 39
    Brown, M. F., M. P. Heyn, C. Job, S. Kim, S. Moltke, K. Nakanishi, A. A. Nevzorov, A. V. Struts, G. F. J. Salgado and I. Wallat (2007) Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes. Biochim. Biophys. Acta 1768, 29793000.
  • 40
    Igumenova, T. I., A. E. McDermott, K. W. Zilm, R. W. Martin, E. K. Paulson and A. J. Wand (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J. Am. Chem. Soc. 126, 67206727.
  • 41
    McDermott, A. E. (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: Rapid movement forward. Curr. Opin. Struct. Biol. 14, 554561.
  • 42
    Castellani, F., B. Van Rossum, A. Diehl, M. Schubert, K. Rehbein and H. Oschkinat (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98102.
  • 43
    Franks, W. T., B. J. Wylie, H. L. F. Schmidt, A. J. Nieuwkoop, R.-M. Mayrhofer, G. J. Shah, D. T. Graesser and C. M. Rienstra (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc. Natl Acad. Sci. USA 105, 46214626.
  • 44
    Li, C., H. Qin, F. P. Gao and T. A. Cross (2007) Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel. Biochim. Biophys. Acta 1768, 31623170.
  • 45
    Dürr, U. H. N., K. Yamamoto, S.-C. Im, L. Waskell and A. Ramamoorthy (2007) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J. Am. Chem. Soc. 129, 66706671.
  • 46
    Lange, C., S. D. Müller, T. H. Walther, J. Bürck and A. S. Ulrich (2007) Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach. Biochim. Biophys. Acta 1768, 26272634.
  • 47
    Komi, N., K. Okawa, Y. Tateishi, M. Shirakawa, T. Fujiwara and H. Akutsu (2007) Structural analysis of pituitary adenylate cyclase-activating polypeptides bound to phospholipid membranes by magic angle spinning solid-state NMR. Biochim. Biophys. Acta 1768, 30013011.
  • 48
    Cady, S. D. and M. Hong (2008) Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proc. Natl Acad. Sci. USA 105, 14831488.
  • 49
    Mak-Jurkauskas, M. L., V. S. Bajaj, M. K. Hornstein, M. Belenky, R. G. Griffin and J. Herzfeld (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc. Natl Acad. Sci. USA 105, 883888.
  • 50
    Nevzorov, A. A., S. Moltke and M. F. Brown (1998) Structure of the A-form and B-form of DNA from deuterium NMR line shape simulation. J. Am. Chem. Soc. 120, 47984805.
  • 51
    Van Beek, J. D., L. Beaulieu, H. Schäfer, M. Demura, T. Asakura and B. H. Meier (2000) Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405, 10771079.
  • 52
    Tycko, R. (2006) Molecular structure of amyloid fibrils: Insights from solid-state NMR. Q. Rev. Biophys. 39, 155.
  • 53
    Brender, J. R., U. H. N. Dürr, D. Heyl, M. B. Budarapu and A. Ramamoorthy (2007) Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes. Biochim. Biophys. Acta 1768, 20262029.
  • 54
    Kloepper, K. D., D. H. Zhou, Y. Li, K. A. Winter, J. M. George and C. M. Rienstra (2007) Temperature-dependent sensitivity enhancement of solid-state NMR spectra of alpha-synuclein fibrils. J. Biomol. NMR 39, 197211.
  • 55
    Lorieau, J. L. and A. E. McDermott (2006) Conformational flexibility of a microcrystalline globular protein: Order parameters by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 1150511512.
  • 56
    Struts, A. V., G. F. J. Salgado, K. Martínez-Mayorga, C. Job, K. Tanaka, S. Krane, K. Nakanishi and M. F. Brown (2007) 2H NMR relaxation and dynamics of retinal cofactor in dark, meta I, and meta II states of rhodopsin. Biophys. J. 92, 150A151A.
  • 57
    Baldus, M. (2006) Molecular interactions investigated by multi-dimensional solid-state NMR. Curr. Opin. Struct. Biol. 16, 618623.
  • 58
    Brown, M. F. (1982) Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J. Chem. Phys. 77, 15761599.
  • 59
    Smith, S. O., I. Palings, M. E. Miley, J. Courtin, H. De Groot, J. Lugtenberg, R. A. Mathies and R. G. Griffin (1990) Solid-state NMR studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Biochemistry 29, 81588164.
  • 60
    Gröbner, G., I. J. Burnett, C. Glaubitz, G. Choi, A. J. Mason and A. Watts (2000) Observations of light-induced structural changes of retinal within rhodopsin. Nature 405, 810813.
  • 61
    Lugtenburg, J. (1985) The synthesis of 13C-labeled retinals. Pure Appl. Chem. 57, 753762.
  • 62
    Wada, A., N. Fujioka, Y. Tanaka and M. Ito (2000) A highly stereoselective synthesis of 11Z-retinal using tricarbonyliron complex. J. Org. Chem. 65, 24382443.
  • 63
    Creemers, A. F. L. and J. Lugtenburg (2002) The preparation of all-trans uniformly 13C-labeled retinal via a modular total organic synthetic strategy. Emerging central contribution of organic synthesis toward the structure and function study with atomic resolution in protein research. J. Am. Chem. Soc. 124, 63246334.
  • 64
    Struts, A. V., G. F. J. Salgado, K. Tanaka, S. Krane, K. Nakanishi and M. F. Brown (2007) Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes. J. Mol. Biol. 372, 5066.
  • 65
    Luecke, H., B. Schobert, H.-T. Richter, J.-P. Cartailler and J. K. Lanyi (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899911.
  • 66
    Lanyi, J. K. (2004) Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665688.
  • 67
    Kusumi, A. and J. S. Hyde (1982) Spin-label saturation-transfer electron spin resonance detection of transient association of rhodopsin in reconstituted membranes. Biochemistry 21, 59785983.
  • 68
    Ryba, N. J. P. and D. Marsh (1992) Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin resonance. Biochemistry 31, 75117518.
  • 69
    Brown, M. F. (1996) Membrane structure and dynamics studied with NMR spectroscopy. In Biological Membranes: A Molecular Perspective from Computation and Experiment (Edited by K. M.MerzJr and B.Roux), pp. 175252. Birkhäuser, Basel.
  • 70
    Petrache, H. I., S. W. Dodd and M. F. Brown (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 79, 31723192.
  • 71
    Verdegem, P. J. E., P. H. M. Bovee-Geurts, W. J. De Grip, J. Lugtenburg and H. J. M. De Groot (1999) Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. Biochemistry 38, 1131611324.
  • 72
    Spooner, P. J. R., J. M. Sharples, M. A. Verhoeven, J. Lugtenberg, C. Glaubitz and A. Watts (2002) Relative orientation between the β-ionone ring and the polyene chain for the chromophore of rhodopsin in native membranes. Biochemistry 41, 75497555.
  • 73
    Bax, A. (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 116.
  • 74
    Cavanaugh, J., W. J. Fairbrother, A. G. Palmer III, N. J. Skelton and M. Rance (2006) Protein NMR Spectroscopy: Principles and Practice, 2nd edn. Academic Press, New York.
  • 75
    Rees, D. C., G. Chang and R. H. Spencer (2000) Crystallographic analyses of ion channels: Lessons and challenges. J. Biol. Chem. 275, 713716.
  • 76
    Fu, D., A. Libson, L. J. W. Miercke, C. Weitzman, P. Nollert, J. Krucinski and R. M. Stroud (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481486.
  • 77
    Nakamichi, H. and T. Okada (2006) Local peptide movement in the photoreaction intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 1272912734.
  • 78
    Gröbner, G., A. Taylor, P. T. F. Williamson, G. Choi, C. Glaubitz, J. A. Watts, W. J. DeGrip and A. Watts (1997) Macroscopic orientation of natural and model membranes for structural studies. Anal. Biochem. 254, 132138.
  • 79
    Nevzorov, A. A., S. Moltke, M. P. Heyn and M. F. Brown (1999) Solid-state NMR line shapes of uniaxially oriented immobile systems. J. Am. Chem. Soc. 121, 76367643.
  • 80
    Copié, V., A. E. McDermott, K. Beshah, J. C. Williams, M. Spyker-Assink, R. T. Gebhard, J. Lugtenberg, J. Herzfeld and R. G. Griffin (1994) Deuterium solid-state NMR studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: Evidence for a 6-s-trans chromophore in the protein. Biochemistry 33, 32803286.
  • 81
    Okada, T., O. P. Ernst, K. Palczewski and K. P. Hofmann (2001) Activation of rhodopsin: New insights from structural and biochemical studies. Trends Biochem. Sci. 26, 318324.
  • 82
    Sakmar, T. P., S. T. Menon, E. P. Marin and E. S. Awad (2002) Rhodopsin: Insights from recent structural studies. Annu. Rev. Biophys. Biomol. Struct. 31, 443484.
  • 83
    Hubbell, W. L., C. Altenbach, C. M. Hubbell and H. G. Khorana (2003) Rhodopsin structure, dynamics, and activation: A perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Prot. Chem. 63, 243290.
  • 84
    Palczewski, K. (2006) G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743767.
  • 85
    Ridge, K. D. and K. Palczewski (2007) Visual rhodopsin sees the light: Structure and mechanism of G protein signaling. J. Biol. Chem. 282, 92979301.
  • 86
    Tanaka, K., A. V. Struts, S. Krane, N. Fujioka, G. F. J. Salgado, K. Martínez-Mayorga, M. F. Brown and K. Nakanishi (2007) Synthesis of CD3-labeled 11-cis-retinals and applications to solid-state deuterium NMR spectroscopy of rhodopsin. Bull. Chem. Soc. Jpn 80, 21772184.
  • 87
    Gröbner, G., G. Choi, I. J. Burnett, C. Glaubitz, P. J. E. Verdegem, J. Lugtenberg and A. Watts (1998) Photoreceptor rhodopsin: Structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett. 422, 201204.
  • 88
    Chen, Y. S. and W. L. Hubbell (1973) Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp. Eye Res. 17, 517532.
  • 89
    Ulrich, A. S., A. Watts, I. Wallat and M. P. Heyn (1994) Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry 33, 53705375.
  • 90
    Huber, T., A. V. Botelho, K. Beyer and M. F. Brown (2004) Membrane model for the GPCR prototype rhodopsin: Hydrophobic interface and dynamical structure. Biophys. J. 86, 20782100.
  • 91
    Fishkin, N., N. Berova and K. Nakanishi (2004) Primary events in dim light vision: A chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Chem. Rec. 4, 120135.
  • 92
    Fujimoto, Y., N. Fishkin, G. Pescitelli, J. Decatur, N. Berova and K. Nakanishi (2002) Solution and biologically relevant conformations of enantiomeric 11-cis-locked cyclopropyl retinals. J. Am. Chem. Soc. 124, 72947302.
  • 93
    Jäger, S., J. W. Lewis, T. A. Zvyaga, I. Szundi, T. P. Sakmar and D. S. Kliger (1997) Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis. Proc. Natl Acad. Sci. USA 94, 85578562.
  • 94
    Fujimoto, Y., J. Ishihara, S. Maki, N. Fujioka, T. Wang, T. Furuta, N. Fishkin, B. Borhan, N. Berova and K. Nakanishi (2001) On the bioactive conformation of the rhodopsin chromophore: Absolute sense of twist around the 6-s-cis bond. Chem. Eur. J. 7, 41984204.
  • 95
    Sugihara, M., J. Hufen and V. Buss (2006) Origin and consequences of steric strain in the rhodopsin binding pocket. Biochemistry 45, 801810.
  • 96
    Gascon, J. A. and V. S. Batista (2004) QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys. J. 87, 29312941.
  • 97
    Crocker, E., M. Eilers, S. Ahuja, V. Hornak, A. Hirshfeld, M. Sheves and S. O. Smith (2006) Location of Trp265 in metarhodopsin II: Implications for the activation mechanism of the visual receptor rhodopsin. J. Mol. Biol. 357, 163172.
  • 98
    Park, J. H., P. Scheerer, K. P. Hofmann, H.-W. Choe and O. P. Ernst (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183188.
  • 99
    Ruprecht, J. J., T. Mielke, R. Vogel, C. Villa and G. F. X. Schertler (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 36093620.
  • 100
    Chabre, M. and J. Breton (1979) The orientation of the chromophore of vertebrate rhodopsin in the “meta” intermediate states and the reversibility of the meta II-meta III transition. Vision Res. 19, 10051018.
  • 101
    Yan, E. C. Y., M. A. Kazmi, Z. Ganim, J.-M. Hou, D. Pan, B. S. W. Chang, T. P. Sakmar and R. A. Mathies (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc. Natl Acad. Sci. USA 100, 92629267.
  • 102
    Lüdeke, S., R. Beck, E. C. Y. Yan, T. P. Sakmar, F. Siebert and R. Vogel (2005) The role of Glu181 in the photoactivation of rhodopsin. J. Mol. Biol. 353, 345356.
  • 103
    Martínez-Mayorga, K., M. C. Pitman, A. Grossfield, S. E. Feller and M. F. Brown (2006) Retinal counterion switch mechanism in vision evaluated by molecular simulations. J. Am. Chem. Soc. 128, 1650216503.
  • 104
    Huber, T., K. Rajamoorthi, V. F. Kurze, K. Beyer and M. F. Brown (2002) Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulations. J. Am. Chem. Soc. 124, 298309.
  • 105
    Crozier, P. S., M. J. Stevens, L. R. Forrest and T. B. Woolf (2003) Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: Coupling between local retinal and larger scale conformational change. J. Mol. Biol. 333, 493514.
  • 106
    Lau, P.-W., A. Grossfield, S. E. Feller, M. C. Pitman and M. F. Brown (2007) Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J. Mol. Biol. 372, 906917.
  • 107
    Isin, B., K. Schulten, E. Tajkhorshid and I. Bahar (2008) Mechanism of signal propagation upon retinal isomerization: Insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys. J. 95, 789803.
  • 108
    Henzler-Wildman, K. A., V. Thai, M. Lei, M. Ott, M. Wolf-Watz, T. Fenn, E. Pozharski, M. A. Wilson, G. A. Petsko, M. Karplus, C. G. Hübner and D. Kern (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838844.