• 1
    Briggs, W. R. (2006) Blue/UV-A: Historical overview. In Photomorphogenesis in plants and bacteria (Edited by E.Schäfer and F.Nagy), pp. 171197. Springer, Dordrecht.
  • 2
    Christie, J. M. (2007) Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 2145.
  • 3
    Banerjee, R. and A. Batschauer (2005) Plant blue-light receptors. Planta 220, 498502.
  • 4
    Demarsy, E. and C. Fankhauser (2009) Higher plants use LOV to perceive blue light. Curr. Opin. Plant Biol. 12, 6974.
  • 5
    Li, Q. H. and H. Q. Yang (2007) Cryptochrome signaling in plants. Photochem. Photobiol. 83, 94101.
  • 6
    Sancar, A. (2004) Photolyase and cryptochrome blue-light photoreceptors. Adv. Prot. Chem. 69, 73100.
  • 7
    Crosson, S. and K. Moffat (2001) Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction. Proc. Natl Acad. Sci. USA 98, 29953000.
  • 8
    Hefti, M. H., K. J. Francoijs, S. C. de Vries, R. Dixon and J. Vervoort (2004) The PAS fold: A redefinition of the PAS domain based upon structural prediction. FEBS J. 271, 11981208.
  • 9
    Briggs, W. R. (2007) The LOV domain: A chromophore module servicing multiple photoreceptors. J. Biomed. Sci. 14, 499504.
  • 10
    Losi, A. and W. Gärtner (2008) Bacterial bilin- and flavin-binding photoreceptors. Photochem. Photobiol. Sci. 7, 11681178.
  • 11
    Cashmore, A. R., J. A. Jarillo, Y. J. Wu and D. M. Liu (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284, 760765.
  • 12
    Partch, C. L. and A. Sancar (2005) Cryptochromes and circadian photoreception in animals. Method. Enzymol. 393, 726745.
  • 13
    Krauss, U., B. Q. Minh, A. Losi, W. Gärtner, T. Eggert, A. von Haeseler and K.-E. Jaeger (2009) The distribution and phylogeny of light, oxygen, voltage (LOV) blue-light signaling proteins in the three kingdoms of life. J. Bacteriol. 191, 72347242.
  • 14
    Pathak, G., A. Ehrenreich, A. Losi, W. R. Streit and W. Gärtner (2009) Novel blue light-sensitive proteins from a metagenomic approach. Environ. Microbiol. 11, 23882399.
  • 15
    Cockell, C. S. (2000) Ultraviolet radiation and the photobiology of earth’s early oceans. Orig. Life Evol. Biosph. 30, 467499.
  • 16
    Redmond, R. W. and J. N. Gamlin (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 70, 391475.
  • 17
    Egorov, S. Y., A. A. Krasnovsky Jr, M. Y. Bashtanov, E. A. Mironov, T. A. Ludnikova and M. S. Kritsky (1999) Photosensitization of singlet oxygen formation by pterins and flavins. Time-resolved studies of oxygen phosphorescence under laser excitation. Biochemistry (Mosc) 64, 11171121.
  • 18
    Baier, J., T. Maisch, M. Maier, E. Engel, M. Landthaler and W. Baumler (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 91, 14521459.
  • 19
    Massey, V. (2000) The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283296.
  • 20
    Edwards, A. M. (2006) General properties of flavins. In Flavin Photochemistry and Photobiology (Edited by E.Silva and A. M.Edwards), pp. 111. Elsevier, Amsterdam, The Netherlands.
  • 21
    Edwards, A. M. (2006) Light-induced flavin toxicity. In Flavins Photochemistry and Photobiology (Edited by E.Silva and A. M.Edwards), pp. 115130. Amsterdam, The Netherlands.
  • 22
    Roje, S. (2007) Vitamin B biosynthesis in plants. Phytochemistry 68, 19041921.
  • 23
    Fischer, M., A. K. Schott, W. Romisch, A. Ramsperger, M. Augustin, A. Fidler, A. Bacher, G. Richter, R. Huber and A. Eisenreich (2004) Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J. Mol. Biol. 343, 267278.
  • 24
    Yatsyshyn, V. Y., D. V. Fedorovych and A. A. Sibirny (2009) The microbial synthesis of flavin nucleotides: A review. Appl. Biochem. Microbiol. 45, 115124.
  • 25
    Velisek, J. and K. Cejpek (2007) Biosynthesis of food constituents: Vitamins. 2. Water-soluble vitamins: Part 1 – A review. Czech J. Food Sci. 25, 4964.
  • 26
    Salzmann, S., V. Martinez-Junza, B. Zorn, S. E. Braslavsky, M. Mansurova, C. M. Marian and W. Gärtner (2009) Photophysical properties of structurally and electronically modified flavin derivatives determined by spectroscopy and theoretical calculations. J. Phys. Chem. A 113, 93659375.
  • 27
    Salzmann, S., J. Tatchen and C. M. Marian (2008) The photophysics of flavins: What makes the difference between gas phase and aqueous solution? J. Photochem. Photobiol. A: Chem. 198, 221231.
  • 28
    Kritsky, M. S., T. A. Telegina, Y. L. Vechtomova, M. P. Kolesnikov, T. A. Lyudnikova and O. A. Golub (2010) Excited flavin and pterin coenzyme molecules in evolution. Biochemistry (Mosc) 75, 12001216.
  • 29
    van den Berg, P. W., J. Widengren, M. A. Hink, R. Rigler and A. G. Visser (2001) Fluorescence correlation spectroscopy of flavins and flavoenzymes: Photochemical and photophysical aspects. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 21352144.
  • 30
    Losi, A., E. Ghiraldelli, S. Jansen and W. Gärtner (2005) Mutational effects on protein structural changes and interdomain interactions in the blue-light sensing LOV protein YtvA. Photochem. Photobiol. 81, 11451152.
  • 31
    Drossler, P., W. Holzer, A. Penzkofer and P. Hegemann (2002) pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chem. Phys. 282, 429439.
  • 32
    Grodowski, M. S., B. Veyret and K. Weiss (1977) Photochemistry of flavins. II. Photophysical propierties of alloxazines. Photochem. Photobiol. 26, 341352.
  • 33
    Chacon, J. N., J. McLearie and R. S. Sinclair (1988) Singlet oxygen yields and radical contributions in the dye-sensitised photo-oxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem. Photobiol. 47, 647656.
  • 34
    Losi, A., E. Polverini, B. Quest and W. Gärtner (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys. J. 82, 26272634.
  • 35
    Islam, S. D. M., T. Susdorf, A. Penzkofer and P. Hegemann (2003) Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer. Chem. Phys. 295, 137149.
  • 36
    Kao, Y. T., C. Saxena, T. F. He, L. J. Guo, L. J. Wang, A. Sancar and D. P. Zhong (2008) Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc. 130, 1313213139.
  • 37
    Swartz, T. E., S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs and R. A. Bogomolni (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276, 3649336500.
  • 38
    Kottke, T., J. Heberle, D. Hehn, B. Dick and P. Hegemann (2003) Phot-LOV1: Photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys. J. 84, 11921201.
  • 39
    Damiani, M. J., G. N. Yalloway, J. Lu, N. R. McLeod and M. A. O’Neill (2009) Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH. Biochemistry 48, 1139911411.
  • 40
    Jung, A., T. Domratcheva, M. Tarutina, Q. Wu, W. H. Ko, R. L. Shoeman, M. Gomelsky, K. H. Gardner and I. Schlichting (2005) Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proc. Natl Acad. Sci. USA 102, 1235012355.
  • 41
    Kita, A., K. Okajima, Y. Morimoto, M. Ikeuchi and K. Miki (2005) Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel fad-binding blue light sensor domain. J. Mol. Biol. 349, 19.
  • 42
    Jung, A., J. Reinstein, T. Domratcheva, R. L. Shoeman and I. Schlichting (2006) Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. J. Mol. Biol. 362, 717732.
  • 43
    Yuan, H., S. Anderson, S. Masuda, V. Dragnea, K. Moffat and C. Bauer (2006) Crystal structures of the Synechocystis photoreceptor Slr1694 reveal distinct structural states related to signaling. Biochemistry 45, 1268712694.
  • 44
    Grinstead, J. S., S. T. Hsu, W. Laan, A. M. J. J. Bonvin, K. J. Hellingwerf, R. Boelens and R. Kaptein (2006) The solution structure of the AppA BLUF domain: Insight into the mechanism of light-induced signaling. CheBioChem 7, 187193.
  • 45
    Barends, T. R. M., E. Hartmann, J. J. Griese, T. Beitlich, N. V. Kirienko, D. A. Ryjenkov, J. Reinstein, R. L. Shoeman, M. Gomelsky and I. Schlichting (2009) Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459, 1015U150.
  • 46
    Wu, Q. and K. H. Gardner (2009) Structure and insight into blue light-induced changes in the BlrP1 BLUF domain. Biochemistry 48, 26202629.
  • 47
    Möglich, A., X. J. Yang, R. A. Ayers and K. Moffat (2010) Structure and function of plant photoreceptors. Annu. Rev. Plant. Phys. 61, 2147.
  • 48
    Briggs, W. R., T. S. Tseng, H. Y. Cho, T. E. Swartz, S. Sullivan, R. A. Bogomolni, E. Kaiserli and J. M. Christie (2007) Phototropins and their LOV domains: Versatile plant blue-light receptors. J. Integr. Plant Biol. 49, 410.
  • 49
    Narikawa, R., K. Zikihara, K. Okajima, Y. Ochiai, M. Katayama, Y. Shichida, S. Tokutomi and M. Ikeuchi (2006) Three putative photosensory light, oxygen or voltage (LOV) domains with distinct biochemical properties from the filamentous cyanobacterium Anabaena sp. PCC 7120. Photochem. Photobiol. 82, 16271633.
  • 50
    Purcell, E. B., D. Siegal-Gaskins, D. C. Rawling, A. Fiebig and S. Crosson (2007) A photosensory two-component system regulates bacterial cell attachment. Proc. Natl Acad. Sci. USA 104, 1824118246.
  • 51
    Swartz, T. E., T. S. Tseng, M. A. Frederickson, G. Paris, D. J. Comerci, G. Rajashekara, J. G. Kim, M. B. Mudgett, G. A. Splitter, R. A. Ugalde, F. A. Goldbaum, W. R. Briggs and R. A. Bogomolni (2007) Blue-light-activated histidine kinases: Two-component sensors in bacteria. Science 317, 10901093.
  • 52
    Corrochano, L. M. (2007) Fungal photoreceptors: Sensory molecules for fungal development and behaviour. Photochem. Photobiol. Sci. 6, 725736.
  • 53
    Hendrischk, A. K., J. Moldt, S. W. Fruhwirth and G. Klug (2009) Characterization of an unusual LOV domain protein in the alpha-proteobacterium Rhodobacter sphaeroides. Photochem. Photobiol. 85, 12541259.
  • 54
    Cao, Z., E. Livoti, A. Losi and W. Gärtner (2010) A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus. Photochem. Photobiol. 86, 606611.
  • 55
    Idnurm, A., S. Verma and L. M. Corrochano (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet. Biol. 47, 881892.
  • 56
    Losi, A. (2007) Flavin-based blue-light photosensors: A photobiophysics update. Photochem. Photobiol. 83, 12831300.
  • 57
    Corchnoy, S. B., T. E. Swartz, J. W. Lewis, I. Szundi, W. R. Briggs and R. A. Bogomolni (2003) Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1. J. Biol. Chem. 278, 724731.
  • 58
    Zoltowski, B. D., B. Vaccaro and B. R. Crane (2009) Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827834.
  • 59
    Kasahara, M., T. E. Swartz, M. A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J. M. Christie, A. Nagatani and W. R. Briggs (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 129, 762773.
  • 60
    Nakasako, M., D. Matsuoka, K. Zikihara and S. Tokutomi (2005) Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein. FEBS Lett. 579, 10671071.
  • 61
    Kikuchi, S., M. Unno, K. Zikihara, S. Tokutomi and S. Yamauchi (2009) Vibrational assignment of the flavin-cysteinyl adduct in a signaling state of the LOV domain in FKF1. J. Phys. Chem. B 113, 29132921.
  • 62
    Kasahara, M., M. Torii, A. Fujita and K. Tainaka (2010) FMN binding and photochemical properties of plant putative photoreceptors containing two LOV domains, LOV/LOV proteins. J. Biol. Chem. 285, 3476534772.
  • 63
    Losi, A., T. Kottke and P. Hegemann (2004) Recording of blue light-induced energy and volume changes within the wild-type and mutated Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 86, 10511060.
  • 64
    Penzkofer, A., L. Endres, T. Schiereis and P. Hegemann (2005) Yield of photo-adduct formation of LOV domains from Chlamydomonas reinhardtii by picosecond laser excitation. Chem. Phys. 316, 185194.
  • 65
    Corchnoy, S. B., T. E. Swartz, I. Szundi, J. W. Lewis, W. R. Briggs and R. A. Bogomolni (2003) Proton transfers in the photocycle of the LOV2 domain of phototropin 1. Biophys. J. 84, 398A.
  • 66
    Schleicher, E., R. M. Kowalczyk, C. W. M. Kay, P. Hegemann, A. Bacher, M. Fischer, R. Bittl, G. Richter and S. Weber (2004) On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J. Am. Chem. Soc. 126, 1106711076.
  • 67
    Bonetti, C., M. Stierl, T. Mathes, I. H. M. van Stokkum, K. M. Mullen, T. A. Cohen-Stuart, R. van Grondelle, P. Hegemann and J. T. M. Kennis (2009) The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain. Biochemistry 48, 1145811469.
  • 68
    Alexandre, M. T. A., T. Domratcheva, C. Bonetti, L. J. G. W. van Wilderen, R. van Grondelle, M. L. Groot, K. J. Hellingwerf and J. T. M. Kennis (2009) Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry. Biophys. J. 97, 227237.
  • 69
    Pfeifer, A., T. Majerus, K. Zikihara, D. Matsuoka, S. Tokutomi, J. Heberle and T. Kottke (2009) Time-resolved Fourier transform infrared study on photoadduct formation and secondary structural changes within the phototropin LOV domain. Biophys. J. 96, 14621470.
  • 70
    Neiss, C. and P. Saalfrank (2004) Molecular dynamics simulation of the LOV2 domain from Adiantum capillus-veneris. J. Chem. Inf. Comput. Sci. 44, 17881793.
  • 71
    Lanzl, K., M. V. Sanden-Flohe, R. J. Kutta and B. Dick (2010) Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: Implications for the mechanism of wild type LOV. Phys. Chem. Chem. Phys. 12, 65946604.
  • 72
    Alexandre, M. T. A., J. C. Arents, R. van Grondelle, K. J. Hellingwerf and J. T. M. Kennis (2007) A base-catalyzed mechanism for dark state recovery in the Avena sativa Phototropin-1 LOV2 DomainΓÇá. Biochemistry 46, 31293137.
  • 73
    Alexandre, M. T. A., E. B. Purcell, R. van Grondelle, B. Robert, J. T. M. Kennis and S. Crosson (2010) Electronic and protein structural dynamics of a photosensory histidine kinase. Biochemistry 49, 47524759.
  • 74
    Losi, A., B. Quest and W. Gärtner (2003) Listening to the blue: The time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem. Photobiol. Sci. 2, 759766.
  • 75
    Christie, J. M., S. B. Corchnoy, T. E. Swartz, M. Hokenson, I. S. Han, W. R. Briggs and R. A. Bogomolni (2007) Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46, 93109319.
  • 76
    Nash, A. I., W. H. Ko, S. M. Harper and K. H. Gardner (2008) A conserved glutamine plays a central role in LOV domain signal transmission and its duration. Biochemistry 47, 1384213849.
  • 77
    Jentzsch, K., A. Wirtz, F. Circolone, T. Drepper, A. Losi, W. Gärtner, K.-E. Jaeger and U. Krauss (2009) Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida. Biochemistry 48, 1032110333.
  • 78
    Brosi, R., B. Illarionov, T. Mathes, M. Fischer, M. Joshi, A. Bacher, P. Hegemann, R. Bittl, S. Weber and E. Schleicher (2010) Hindered rotation of a cofactor methyl group as a probe for protein-cofactor interaction. J. Am. Chem. Soc. 132, 89358944.
  • 79
    Möglich, A. and K. Moffat (2010) Engineered photoreceptors as novel optogenetic tools. Photochem. Photobiol. Sci. 9, 12861300.
  • 80
    Tang, Y., Z. Cao, E. Livoti, U. Krauss, K.-E. Jaeger, W. Gärtner and A. Losi (2010) Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: A mutagenesis study uncovering the importance of specific protein sites. Photochem. Photobiol. Sci. 9, 4756.
  • 81
    Möglich, A. and K. Moffat (2007) Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J. Mol. Biol. 373, 112126.
  • 82
    Nozaki, D., T. Iwata, T. Ishikawa, T. Todo, S. Tokutomi and H. Kandori (2004) Role of Gln1029 in the photoactivation processes of the LOV2 domain in Adiantum phytochrome3. Biochemistry 43, 83878379.
  • 83
    Alexandre, M. T. A., R. van Grondelle, K. J. Hellingwerf and J. T. M. Kennis (2009) Conformational heterogeneity and propagation of structural changes in the LOV2/J alpha domain from Avena sativa phototropin 1 as recorded by temperature-dependent FTIR spectroscopy. Biophys. J. 97, 238247.
  • 84
    Iwata, T., D. Nozaki, Y. Sato, K. Sato, Y. Nishina, K. Shiga, S. Tokutomi and H. Kandori (2006) Identification of the C=O stretching vibrations of FMN and peptide backbone by C-13-labeling of the LOV2 domain of Adiantum phytochrome3. Biochemistry 45, 1538415391.
  • 85
    Eisenreich, W., M. Joshi, B. Illarionov, G. Richter, W. Römisch-Margl, F. Müller, A. Bacher and M. Fischer (2007) 13C-isotopologue editing of FMN bound to phototropin domains. FEBS J. 274, 58765890.
  • 86
    Mansurova, M., P. Scheercousse, J. Simon, M. Kluth and W. Gärtner (2011) Chromophore exchange in the blue light-sensitive photoreceptor YtvA from Bacillus subtilis. Chembiochem 12, 641646.
  • 87
    Masuda, S. and C. E. Bauer (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110, 613623.
  • 88
    Gomelsky, M. and G. Klug (2002) BLUF: A novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27, 497500.
  • 89
    Ito, S., A. Murakami, K. Sato, Y. Nishina, K. Shiga, T. Takahashi, S. Higashi, M. Iseki and M. Watanabe (2005) Photocycle features of heterologously expressed and assembled eukaryotic flavin-binding BLUF domains of photoactivated adenylyl cyclase (PAC), a blue-light receptor in Euglena gracilis. Photochem. Photobiol. Sci. 4, 762769.
  • 90
    Rajagopal, S., J. M. Key, E. B. Purcell, D. J. Boerema and K. Moffat (2004) Purification and initial characterization of a putative blue light-regulated phosphodiesterase from Escherichia coli. Photochem. Photobiol. 80, 542547.
  • 91
    Masuda, S., K. Hasegawa, A. Ishii and T. A. Ono (2004) Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry 43, 53045313.
  • 92
    Fukushima, Y., K. Okajima, Y. Shibata, M. Ikeuchi and S. Itoh (2005) Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1. Biochemistry 44, 51495158.
  • 93
    Zirak, P., A. Penzkofer, T. Schiereis, P. Hegemann, A. Jung and I. Schlichting (2006) Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides. J. Photochem. Photobiol. B: Biol. 83, 180190.
  • 94
    Gauden, M., S. Yeremenko, W. Laan, I. H. M. van Stokkum, J. A. Ihalainen, R. van Grondelle, K. J. Hellingwerf and J. T. M. Kennis (2005) Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44, 36533662.
  • 95
    Okajima, K., Y. Fukushima, H. Suzuki, A. Kita, Y. Ochiai, M. Katayama, Y. Shibata, K. Miki, T. Noguchi and a. Itoh et (2006) Fate determination of the flavin photoreceptions in the cyanobacterial blue light receptor TePixD (Tll0078). J. Mol. Biol. 363, 1018.
  • 96
    Suzuki, H., K. Okajima, M. Ikeuchi and T. Noguchi (2008) LOV-like flavin-Cys adduct formation by introducing a Cys residue in the BLUF domain of TePixD. J. Am. Chem. Soc. 130, 12884.
  • 97
    Gauden, M., I. H. M. van Stokkum, J. M. Key, D. C. Luhrs, R. van Grondelle, P. Hegemann and J. T. M. Kennis (2006) Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proc. Natl Acad. Sci. USA 103, 1089510900.
  • 98
    Domratcheva, T., B. L. Grigorenko, I. Schlichting and A. V. Nemukhin (2008) Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors. Biophys. J. 94, 38723879.
  • 99
    Stelling, A. L., K. L. Ronayne, J.O. Nappa, P. J. Tonge and S. R. Meech (2007) Ultrafast structural dynamics in BLUF domains: Transient infrared spectroscopy of AppA and its mutants. J. Am. Chem. Soc. 129, 1555615564.
  • 100
    Sadeghian, K., M. Bocola and M. Schütz (2008) A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J. Am. Chem. Soc. 130, 1250112513.
  • 101
    Khrenova, M. G., A. V. Nemukhin, B. L. Grigorenko, A. I. Krylov and T. M. Domratcheva (2010) Quantum chemistry calculations provide support to the mechanism of the light-induced structural changes in the flavin-binding photoreceptor proteins. J. Chem. Theory Comput. 6, 22932302.
  • 102
    Huala, E., P. W. Oeller, E. Liscum, I. S. Han, E. Larsen and W. R. Briggs (1997) Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 21202123.
  • 103
    Salomon, M., E. Knieb, T. von Zeppelin and W. Rüdiger (2003) Μapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42, 42174225.
  • 104
    Tokutomi, S., D. Matsuoka and K. Zikihara (2008) Molecular structure and regulation of phototropin kinase by blue light. Biochim. Biophys. Acta 1784, 133142.
  • 105
    Sullivan, S., C. E. Thomson, D. J. Lamont, M. A. Jones and J. M. Christie (2008) In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol. Plant 1, 178194.
  • 106
    Inoue, S., T. Kinoshita, M. Matsumoto, K. I. Nakayama, M. Doi and K. Shimazaki (2008) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl Acad. Sci. USA 105, 56265631.
  • 107
    Cao, Z., V. Buttani, A. Losi and W. Gärtner (2008) A blue light inducible two component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. Biophys. J. 94, 897905.
  • 108
    Crosson, S., S. Rajagopal and K. Moffat (2003) The LOV domain family: Photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42, 210.
  • 109
    Losi, A. (2004) The bacterial counterparts of plants phototropins. Photochem. Photobiol. Sci. 3, 566574.
  • 110
    Fedorov, R., I. Schlichting, E. Hartmann, T. Domratcheva, M. Fuhrmann and P. Hegemann (2003) Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 24922501.
  • 111
    Halavaty, A. S. and K. Moffat (2007) N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa(,). Biochemistry 46, 1400114009.
  • 112
    Zoltowski, B. D., C. Schwerdtfeger, J. Widom, J. J. Loros, A. M. Bilwes, J. C. Dunlap and B. R. Crane (2007) Conformational switching in the fungal light sensor Vivid. Science 316, 10541057.
  • 113
    Buttani, V., A. Losi, T. Eggert, U. Krauss, K.-E. Jaeger, Z. Cao and W. Gärtner (2007) Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV–LOV dimerization and interdomain interactions. Photochem. Photobiol. Sci. 6, 4149.
  • 114
    Koyama, T., T. Iwata, A. Yamamoto, Y. Sato, D. Matsuoka, S. Tokutomi and H. Kandori (2009) Different role of the J alpha helix in the light-induced activation of the LOV2 domains in various phototropins. Biochemistry 48, 76217628.
  • 115
    Jones, M. A., K. A. Feeney, S. M. Kelly and J. M. Christie (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J. Biol. Chem. 282, 64056414.
  • 116
    Avila-Perez, M., J. Vreede, Y. Tang, O. Bende, A. Losi, W. Gärtner and K. Hellingwerf (2009) In vivo mutational analysis of YTVA from Bacillus subtilis: Mechanism of light-activation of the general stress response. J. Biol. Chem. 284, 2495824964.
  • 117
    Harper, S. M., L. C. Neil and K. H. Gardner (2003) Structural basis of a phototropin light switch. Science 301, 15411544.
  • 118
    Harper, S. M., J. M. Christie and K. H. Gardner (2004) Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. Biochemistry 43, 1618416192.
  • 119
    Yao, X., M. K. Rosen and K. H. Gardner (2008) Estimation of the available free energy in a LOV2-Jα photoswitch. Nat. Chem. Biol. 4, 491497.
  • 120
    Strickland, D., X. L. Yao, G. Gawlak, M. K. Rosen, K. H. Gardner and T. R. Sosnick (2010) Rationally improving LOV domain-based photoswitches. Nat. Methods 7, 623U18.
  • 121
    Jurk, M., M. Dorn, A. Kikhney, D. Svergun, W. Gärtner and P. Schmieder (2010) The switch that does not flip: The blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J. Mol. Biol. 403, 7887.
  • 122
    Christie, J. M., T. E. Swartz, R. A. Bogomolni and W. R. Briggs (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J. 32, 205219.
  • 123
    Cho, H. Y., T. S. Tseng, E. Kaiserli, S. Sullivan, J. M. Christie and W. R. Briggs (2007) Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol. 143, 517529.
  • 124
    Kaiserli, E., S. Sullivan, M. A. Jones, K. A. Feeney and J. M. Christie (2009) Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell 21, 32263244.
  • 125
    Cheng, P., Q. He, Y. Yang, L. Wang and Y. Liu (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl Acad. Sci. USA 100, 59385943.
  • 126
    Möglich, A., R. A. Ayers and K. Moffat (2009) Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385, 14331444.
  • 127
    Sullivan, S., C. E. Thomson, E. Kaiserli and J. M. Christie (2009) Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett. 583, 21872193.
  • 128
    Schmidt, A. J., D. A. Ryjenkov and M. Gomelsky (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. J. Bacteriol. 187, 47744781.
  • 129
    Hasegawa, K., S. Masuda and T. A. Ono (2004) Structural intermediate in the photocycle of a BLUF (sensor of blue light using FAD) protein Slr1694 in a Cyanobacterium Synechocystis sp. PCC6803. Biochemistry 43, 1497914986.
  • 130
    Hasegawa, K., S. Masuda and T. A. Ono (2005) Spectroscopic analysis of the dark relaxation process of a photocycle in a sensor of blue light using FAD (BLUF) protein Slr1694 of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 46, 136146.
  • 131
    Hasegawa, K., S. Masuda and T. A. Ono (2006) Light induced structural changes of a full-length protein and its BLUF domain in YcgF(Blrp), a blue-light sensing protein that uses FAD (BLUF). Biochemistry 45, 37853793.
  • 132
    Tschowri, N., S. Busse and R. Hengge (2009) The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Gene Dev. 23, 522534.
  • 133
    Schroeder, C., K. Werner, H. Otten, S. Krätzig, H. Schwalbe and L. O. Essen (2008) Influence of a joining helix on the BLUF domain of the YcgF photoreceptor from Escherichia coli. Chembiochem 9, 24632473.
  • 134
    Masuda, S., K. Hasegawa and T. A. Ono (2005) Tryptophan at position 104 is involved in transforming light signal into changes of beta-sheet structure for the signaling state in the BLUF domain of AppA. Plant Cell Physiol. 46, 18941901.
  • 135
    Masuda, S., Y. Tomida, H. Ohta and K. I. Takamiya (2007) The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUF domain that controls AppA activity. J. Mol. Biol. 18, 12231230.
  • 136
    Metz, S., J. Hendriks, A. Jager, K. Hellingwerf and G. Klug (2010) In vivo effects on photosynthesis gene expression of base pair exchanges in the gene encoding the light-responsive BLUF domain of AppA in Rhodobacter Sphaeroides. Photochem. Photobiol. 86, 882889.
  • 137
    Dragnea, V., A. I. Arunkumar, H. Yuan, D. P. Giedroc and C. E. Bauer (2009) Spectroscopic studies of the AppA BLUF domain from Rhodobacter sphaeroides: Addressing movement of tryptophan 104 in the signaling state. Biochemistry 48, 99699979.
  • 138
    Grinstead, J. S., M. Avila-Perez, K. J. Hellingwerf, R. Boelens and R. Kaptein (2006) Light-induced flipping of a conserved glutamine sidechain and its orientation in the AppA BLUF domain. J. Am. Chem. Soc. 128, 1506615067.
  • 139
    Unno, M., S. Kikuchi and S. Masuda (2010) Structural refinement of a key tryptophan residue in the BLUF photoreceptor AppA by ultraviolet resonance Raman spectroscopy. Biophys. J. 98, 19491956.
  • 140
    Salomon, M., U. Lempert and W. Rüdiger (2004) Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett. 572, 810.
  • 141
    Nakasone, Y., T. Eitoku, K. Zikihara, D. Matsuoka, S. Tokutomi and M. Terazima (2008) Stability of dimer and domain–domain interaction of Arabidopsis phototropin 1 LOV2. J. Mol. Biol. 383, 904913.
  • 142
    Nakasako, M., K. Zikihara, D. Matsuoka, H. Katsura and S. Tokutomi (2008) Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J. Mol. Biol. 381, 718733.
  • 143
    Katsura, H., K. Zikihara, K. Okajima, S. Yoshihara and S. Tokutomi (2009) Oligomeric structure of LOV domains in Arabidopsis phototropin. FEBS Lett. 583, 526530.
  • 144
    Nakasone, Y., T. Eitoku, D. Matsuoka, S. Tokutomi and M. Terazima (2006) Kinetic measurement of transient dimerization and dissociation reactions of Arabidopsis phototropin 1 LOV2 domain. Biophys. J. 91, 645653.
  • 145
    Lamb, J. S., B. D. Zoltowski, S. A. Pabit, L. Li, B. R. Crane and L. Pollack (2009) Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. J. Mol. Biol. 393, 909919.
  • 146
    Ogata, H., Z. Cao, A. Losi and W. Gärtner (2009) Crystallization and preliminary X-ray analysis of the LOV domain of the blue-light receptor YtvA from Bacillus amyloliquefaciens FZB42. Acta Cryst. 65, 853855.
  • 147
    Zoltowski, B. D. and B. R. Crane (2008) Light activation of the LOV protein Vivid generates a rapidly exchanging dimer. Biochemistry 47, 70127019.
  • 148
    Yang, X., E. A. Stojkovic, J. Kuk and K. Moffat (2007) Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc. Natl Acad. Sci. USA 104, 1257112576.
  • 149
    Suzuki, N., N. Takaya, T. Hoshino and A. Nakamura (2007) Enhancement of a σB-dependent stress response in Bacillus subtilis by light via YtvA photoreceptor. J. Gen. Appl. Microbiol. 53, 8188.
  • 150
    Ballario, P., C. Talora, D. Galli, H. Linden and G. Macino (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29, 719729.
  • 151
    Schwerdtfeger, C. and H. Linden (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 48464855.
  • 152
    Malzahn, E., S. Ciprianidis, K. Kaldi, T. Schafmeier and M. Brunner (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142, 762772.
  • 153
    Hazra, P., K. Inoue, W. Laan, K. J. Hellingwerf and M. Terazima (2006) Tetramer formation kinetics in the signaling state of AppA monitored by time-resolved diffusion. Biophys. J. 91, 654661.
  • 154
    Kraft, B. J., S. Masuda, J. Kikuchi, V. Dragnea, G. Tollin, J. M. Zaleski and C. E. Bauer (2003) Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: A novel photocycle involving flavin stacking with an aromatic amino acid. Biochemistry 42, 67266734.
  • 155
    Hazra, P., K. Inoue, W. Laan, K. J. Hellingwerf and M. Terazima (2008) Energetics and role of the hydrophobic interaction during photoreaction of the BLUF domain of AppA. J. Phys. Chem. B 112, 14941501.
  • 156
    Anderson, S., V. Dragnea, S. Masuda, J. Ybe, K. Moffat and C. Bauer (2005) Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 44, 79988005.
  • 157
    Yuan, H. and C. E. Bauer (2008) PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc. Natl Acad. Sci. USA 105, 1171511719.
  • 158
    Masuda, S., K. Hasegawa, H. Ohta and T. Ono (2008) Crucial role in light signal transduction for the conserved Met93 of the BLUF protein PixD/Slr1694. Plant Cell Physiol. 49, 16001606.
  • 159
    Nakasone, Y., T. Ono, A. Ishii, S. Masuda and M. Terazima (2010) Temperature-sensitive reaction of a photosensor protein YcgF: Possibility of a role of temperature sensor. Biochemistry 49, 22882296.
  • 160
    Kinoshita, T., T. Emi, M. Tominaga, K. Sakamoto, A. Shigenaga, M. Doi and K. I. Shimazaki (2003) Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol. 133, 14531463.
  • 161
    Mhawech, P. (2005) 14-3-3 proteins—an update. Cell Res. 15, 228236.
  • 162
    Motchoulski, A. and E. Liscum (1999) Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961964.
  • 163
    Inada, S., M. Ohgishi, T. Mayama, K. Okada and T. Sakai (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887896.
  • 164
    Lariguet, P., I. Schepens, D. Hodgson, U. V. Pedmale, M. Trevisan, C. Kami, M. de Carbonnel, J. M. Alonso, J. R. Ecker, E. Liscum and C. Fankhauser (2006) Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism. Proc. Natl Acad. Sci. USA 103, 1013410139.
  • 165
    Esmon, C. A., A. G. Tinsley, K. Ljung, G. Sandberg, L. B. Hearne and E. Liscum (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc. Natl Acad. Sci. USA 103, 236241.
  • 166
    Losi, A. and W. Gärtner (2008) Shedding (blue) light on algal gene expression. Proc. Natl Acad. Sci. USA 105, 78.
  • 167
    Takahashi, F., D. Yamagata, M. Ishikawa, Y. Fukamatsu, Y. Ogura, M. Kasahara, T. Kiyosue, M. Kikuyama, M. Wada and H. Kataoka (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc. Natl Acad. Sci. USA 104, 1962519630.
  • 168
    Ishikawa, M., F. Takahashi, H. Nozaki, C. Nagasato, T. Motomura and H. Kataoka (2009) Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 230, 543552.
  • 169
    Andrade, M. A., M. Gonzalez-Guzman, R. Serrano and P. L. Rodriguez (2001) A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins. Plant Mol. Biol. 46, 603614.
  • 170
    Mizoguchi, T. and G. Coupland (2000) ZEITLUPE and FKF1: Novel connections between flowering time and circadian clock control. Trends Plant Sci. 5, 409411.
  • 171
    Somers, D. E. and S. Fujiwara (2009) Thinking outside the F-box: Novel ligands for novel receptors. Trends Plant Sci. 14, 206213.
  • 172
    Fujiwara, S. (2009) Novel blue light receptors with an F-box: Their direct control of the circadian clock and the flowering timing in Arabidopsis. Plant Biotechnol. 25, 123129.
  • 173
    Sawa, M., D. A. Nusinow, S. A. Kay and T. Imaizumi (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261265.
  • 174
    Kim, W. Y., S. Fujiwara, S. S. Suh, J. Kim, Y. Kim, L. Han, K. David, J. Putterill, H. G. Nam and D. E. Somers (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356360.
  • 175
    Buttani, V., A. Losi, E. Polverini and W. Gärtner (2006) Blue news: NTP binding properties of the blue-light sensitive YtvA protein from Bacillus subtilis. FEBS Lett. 580, 38183822.
  • 176
    Gaidenko, T. A., T. J. Kim, A. L. Weigel, M. S. Brody and C. W. Price (2006) The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J. Bacteriol. 188, 63876395.
  • 177
    Avila-Perez, M., K. J. Hellingwerf and R. Kort (2006) Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA. J. Bacteriol. 188, 64116414.
  • 178
    Bauer, C., S. Elsen, L. R. Swem, D. L. Swem and S. Masuda (2003) Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 147153.
  • 179
    Metz, S., A. Jager and G. Klug (2009) In vivo sensitivity of blue-light-dependent signaling mediated by AppA/PpsR or PrrB/PrrA in Rhodobacter sphaeroides. J. Bacteriol. 191, 44734477.
  • 180
    Han, Y., M. H. F. Meyer, M. Keusgen and G. Klug (2007) A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Mol. Microbiol. 64, 10901104.
  • 181
    Gomelsky, L., O. V. Moskvin, R. A. Stenzel, D. F. Jones, T. J. Donohue and M. Gomelsky (2008) Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J. Bacteriol. 190, 81068114.
  • 182
    Ballario, P. and G. Macino (1997) White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 5, 458462.
  • 183
    Ambra, R., B. Grimaldi, S. Zamboni, P. Filetici, G. Macino and P. Ballario (2004) Photomorphogenesis in the hypogeous fungus Tuber borchii: Isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet. Biol. 41, 688697.
  • 184
    Chen, C. H. and J. J. Loros (2009) Neurospora sees the light: Light signaling components in a model system. Commun. Integr. Biol. 2, 448451.
  • 185
    Elvin, M., J. J. Loros, J. C. Dunlap and C. Heintzen (2005) The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev. 19, 25932605.
  • 186
    Lamb, J. S., B. D. Zoltowski, S. A. Palin, L. Li, B. R. Crane and L. Pollack (2009) Dimer formation in the blue light sensing protein Vivid. Biophys. J. 96, 524a.
  • 187
    Schmoll, M., L. Franchi and C. P. Kubicek (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot. Cell 4, 19982007.
  • 188
    Holland, J. J., D. Roberts and E. Liscum (2009) Understanding phototropism: From Darwin to today. J. Exp. Bot. 60, 19691978.
  • 189
    Huang, K. and C. F. Beck (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 100, 62696274.
  • 190
    Im, C. S., S. Eberhard, K. Y. Huang, C. F. Beck and A. R. Grossman (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J. 48, 116.
  • 191
    Baudry, A., S. Ito, Y. H. Song, A. A. Strait, T. Kiba, S. Lu, R. Henriques, J. L. Pruneda-Paz, N. H. Chua, E. M. Tobin, S. A. Kay and T. Imaizumi (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22, 606622.
  • 192
    Scott, J. M., J. Ju, T. Mitchell and W. G. Haldenwang (2000) The Bacillus subtilis GTP binding protein Obg and regulators of the sigma B stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182, 27712777.
  • 193
    Piggot, P. J. and D. W. Hilbert (2004) Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579586.
  • 194
    Zhang, S. and W. G. Haldenwang (2005) Contributions of ATP, GTP, and redox state to nutritional stress activation of the Bacillus subtilis sigmaB transcription factor. J. Bacteriol. 187, 75547560.
  • 195
    van der Horst, M. A., J. Key and K. J. Hellingwerf (2007) Photosensing in chemotrophic, non-phototrophic bacteria: Let there be light sensing too. Trends Microbiol. 15, 554562.
  • 196
    Idnurm, A. and S. Crosson (2009) The photobiology of microbial pathogenesis. PLoS Pathog. 5, e1000470.
  • 197
    Iseki, M., S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori and M. Watanabe (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415, 10471051.
  • 198
    Ntefidou, M., M. Iseki, M. Watanabe, M. Lebert and D. P. Häder (2003) Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiol. 133, 15171521.
  • 199
    Koumura, Y., T. Suzuki, S. Yoshikawa, M. Watanabe and M. Iseki (2004) The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: Phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis. Photochem. Photobiol. Sci. 3, 580586.
  • 200
    Braatsch, S., M. Gomelsky, S. Kuphal and G. Klug (2002) A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol. Microbiol. 45, 827836.
  • 201
    Moskvin, O. V., S. Kaplan, M. A. Gilles-Gonzalez and M. Gomelsky (2007) Novel heme-based oxygen sensor with a revealing evolutionary history. J. Biol. Chem. 282, 2874028748.
  • 202
    Han, Y., S. Braatsch, L. Osterloh and G. Klug (2004) A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc. Natl Acad. Sci. USA 101, 1230612311.
  • 203
    Spring, S., H. Lunsdorf, B. M. Fuchs and B. J. Tindall (2009) The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp nov. PLoS ONE 4, e4866.
  • 204
    Masuda, S. and T. A. Ono (2004) Biochemical characterization of the major adenylyl cyclase, Cya1, in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 577, 255258.
  • 205
    Okajima, K., S. Yoshihara, Y. Fukushima, X. Geng, M. Katayama, S. Higashi, M. Watanabe, S. Sato, S. Tabata, Y. Shibata, S. Itoh and M. Ikeuchi (2005) Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J. Biochem. 137, 741750.
  • 206
    Fiedler, B., T. Börner and A. Wilde (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: Role of different photoreceptors. Photochem. Photobiol. 81, 14811488.
  • 207
    DeRosa, M. C. and R. J. Crutchley (2002) Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233, 351371.
  • 208
    Enwemeka, C. S., D. Williams, S. K. Enwemeka, S. Hollosi and D. Yens (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed. Laser Surg. 27, 221226.
  • 209
    Krauss, U. 2008 Bacterial Blue-Light Photoreceptors of the LOV Family. Ph.D. thesis, University of Duesseldorf.
  • 210
    Stephan, B. and K. Gabriele (2004) Blue light perception in bacteria. Photosynth. Res. 79, 4557.
  • 211
    Losi, A., C. Viappiani and S. Nonell (2010) Photofunctional proteins: From understanding to engineering. Photochem. Photobiol. Sci. 9, 1285.
  • 212
    Pakhomov, A. A. and V. I. Martynov (2008) GFP family: Structural insights into spectral tuning. Chem. Biol. 15, 755764.
  • 213
    Drepper, T., T. Eggert, F. Circolone, A. Heck, U. Krauss, J.-K. Guterl, M. Wendorff, A. Losi, W. Gärtner and K.-E. Jaeger (2007) Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnol. 25, 443445.
  • 214
    Chapman, S., C. Faulkner, E. Kaiserli, C. Garcia-Mata, E. I. Savenkov, A. G. Roberts, K. J. Oparka and J. M. Christie (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl Acad. Sci. USA 105, 2003820043.
  • 215
    Nagel, G., M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg and A. Gottschalk (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 22792284.
  • 216
    Deisseroth, K., G. Feng, A. K. Majewska, G. Miesenbock, A. Ting and M. J. Schnitzer (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 1038010386.
  • 217
    Nichols, C. D. and B. L. Roth (2009) Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers Mol. Neurosci. 2, 16.
  • 218
    Arrenberg, A. B., F. Del Bene and H. Baier (2009) Optical control of zebrafish behavior with halorhodopsin. Proc. Natl Acad. Sci. USA 106, 1796817973.
  • 219
    Nagahama, T., T. Suzuki, S. Yoshikawa and M. Iseki (2007) Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons. Neuroscience Res. 59, 8188.
  • 220
    Schröder-Lang, S., M. Schwärzel, R. Seifert, T. Strünker, S. Kateriya, J. Looser, M. Watanabe, U. B. Kaupp, P. Hegemann and G. Nagel (2007) Fast manipulation of cellular cAMP level by light in vivo. Nature Meth. 4, 3942.
  • 221
    Stierl, M., P. Stumpf, D. Udwari, R. Gueta, R. Hagedorn, A. Losi, W. Gärtner, L. Petereit, M. Efetova, M. Schwarzel, T. G. Oertner, G. Nagel and P. Hegemann (2011) Light-modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium beggiatoa. J. Biol. Chem. 2, 11811188.
  • 222
    Ryu, M. H., O. V. Moskvin, J. Siltberg-Liberles and M. Gomelsky (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J. Biol. Chem. 285, 4150141508.
  • 223
    Matsuoka, D. and S. Tokutomi (2005) Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc. Natl Acad. Sci. USA 102, 1333713342.
  • 224
    Strickland, D., K. Moffat and T. R. Sosnick (2008) Light-activated DNA binding in a designed allosteric protein. Proc. Natl Acad. Sci. USA 105, 1070910714.
  • 225
    Möglich, A., R. A. Ayers and K. Moffat (2010) Addition at the molecular level: Signal integration in designed Per-ARNT-Sim receptor proteins. J. Mol. Biol. 400, 477486.
  • 226
    Wu, Y. I., D. Frey, O. I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman and K. M. Hahn (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104108.
  • 227
    Singh, A. H., T. Doerks, I. Letunic, J. Raes and P. Bork (2009) Discovering functional novelty in metagenomes: Examples from light-mediated processes. J. Bacteriol. 191, 3241.
  • 228
    Guex, N. and M. C. Peitsch (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 27142723.
  • 229
    Yamamoto, A., T. Iwata, S. Tokutomi and H. Kandori (2008) Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum. Biochemistry 47, 922928.
  • 230
    Crosson, S. and K. Moffat (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 10671075.
  • 231
    Losi, A., E. Ternelli and W. Gärtner (2004) Tryptophan Fluorescence in the Bacillus subtilis phototropin-related protein YtvA as a marker of interdomain interaction. Photochem. Photobiol. 80, 150153.
  • 232
    Harper, S. M., L. C. Neil, I. J. Day, P. J. Hore and K. H. Gardner (2004) Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J. Am. Chem. Soc. 126, 33903391.
  • 233
    Yamamoto, A., T. Iwata, Y. Sato, D. Matsuoka, S. Tokutomi and H. Kandori (2009) Light signal transduction pathway from flavin chromophore to the J[alpha] helix of Arabidopsis phototropin1. Biophys. J. 96, 27712778.
  • 234
    Looser, J., S. Schroder-Lang, P. Hegemann and G. Nagel (2009) Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PAC alpha). Biol. Chem. 390, 11051111.
  • 235
    Ito, S., A. Murakami, M. Iseki, T. Takahashi, S. Higashi and M. Watanabe (2010) Differentiation of photocycle characteristics of flavin-binding BLUF domains of alpha- and beta-subunits of photoactivated adenylyl cyclase of Euglena gracilis. Photochem. Photobiol. Sci. 9, 13271335.
  • 236
    Raffelberg, S., M. Mansurova, W. Gärtner and A. Losi (2011) Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen bonding network. J. Am. Chem. Soc., .