SEARCH

SEARCH BY CITATION

References

  • 1
    Rutherford, A. W. and A. Boussac (2004) Water photolysis in biology. Science 303, 17821784.
  • 2
    Melis, A., L. P. Zhang, M. Forestier, M. L. Ghirardi and M. Seibert (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127135.
  • 3
    Ghirardi, M. L., J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis (2000) Microalgae: A green source of renewable H2. Trends Biotechnol. 18, 506511.
  • 4
    Stripp, S. T. and T. Happe (2009) How algae produce hydrogen—news from the photosynthetic hydrogenase. Dalton Trans., 99609969.
  • 5
    Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740748.
  • 6
    Fontecilla-Camps, J. C., A. Volbeda, C. Cavazza and Y. Nicolet (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 42734303.
  • 7
    McConnell, I., G. Li and G. W. Brudvig (2010) Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434447.
  • 8
    Barber, J. (2009) Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185196.
  • 9
    Benniston, A. C. and A. Harriman (2008) Artificial photosynthesis. Mater. Today 11, 2634.
  • 10
    Gust, D., D. Kramer, A. Moore, T. A. Moore and W. Vermaas (2008) Engineered and artificial photosynthesis: Human ingenuity enters the game. MRS Bull. 33, 383387.
  • 11
    Gust, D., T. A. Moore and A. L. Moore (2001) Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 4048.
  • 12
    Fukuzumi, S. (2008) Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 22832297.
  • 13
    Aratani, N., D. Kim and A. Osuka (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 19221934.
  • 14
    Wenger, O. S. (2009) Long-range electron transfer in artificial systems with d(6) and d(8) metal photosensitizers. Coord. Chem. Rev. 253, 14391457.
  • 15
    Albinsson, B. and J. Martensson (2008) Long-range electron and excitation energy transfer in donor-bridge-acceptor systems. J. Photochem. Photobiol., C 9, 138155.
  • 16
    Harriman, A. and J. P. Sauvage (1996) Strategy for constructing photosynthetic models: Porphyrin-containing modules assembled around transition metals. Chem. Soc. Rev. 25, 41.
  • 17
    Flamigni, L., J. P. Collin and J. P. Sauvage (2008) Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy. Acc. Chem. Res. 41, 857871.
  • 18
    Durr, H. and S. Bossmann (2001) Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc. Chem. Res. 34, 905917.
  • 19
    Wasielewski, M. R. (2006) Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 50515066.
  • 20
    Wasielewski, M. R. (2009) Self-assembly strategies for integrating light-harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 19101921.
  • 21
    Hasobe, T. (2010) Supramolecular nanoarchitectures for light energy conversion. Phys. Chem. Chem. Phys. 12, 4457.
  • 22
    Durrant, J. R., S. A. Haque and E. Palomares (2006) Photochemical energy conversion: From molecular dyads to solar cells. Chem. Commun., 32793289.
  • 23
    Morris, A. J., G. J. Meyer and E. Fujita (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 19831994.
  • 24
    Youngblood, W. J., S.-H. A. Lee, K. Maeda and T. E. Mallouk (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 19661973.
  • 25
    Inoue, Y. (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ. Sci. 2, 364386.
  • 26
    Sivula, K., F. Le Formal and M. Gratzel (2011) Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432449.
  • 27
    Kanan, M. W., Y. Surendranath and D. G. Nocera (2009) Cobalt–phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109114.
  • 28
    Najafpour, M. M., T. Ehrenberg, M. Wiechen and P. Kurz (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 22332237.
  • 29
    Hou, Y., B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Sett, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434438.
  • 30
    Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey and J. C. Fontecilla-Camps (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580587.
  • 31
    Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 18531858.
  • 32
    Nicolet, Y., C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps (1999) Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Struct. Fold. Des. 7, 1323.
  • 33
    Jones, A. K., E. Sillery, S. P. J. Albracht and F. A. Armstrong (2002) Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun., 866867.
  • 34
    Reisner, E. (2011) Solar hydrogen evolution with hydrogenases: From natural to hybrid systems. Eur. J. Inorg. Chem. 2011, 10051016.
  • 35
    Okura, I., M. Takeuchi, S. Kusunoki and S. Aono (1982) Photoreduction of cytochrome c3 and hydrogen evolution with hydrogenase. Chem. Lett. 11, 187188.
  • 36
    Okura, I. (1985) Hydrogenase and its application for photoinduced hydrogen evolution. Coord. Chem. Rev. 68, 5399.
  • 37
    Amao, Y., T. Hiraishi and I. Okura (1997) Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase. J. Mol. Catal. A: Chem. 126, 2126.
  • 38
    Hiraishi, T., T. Kamachi and I. Okura (1996) Kinetic studies of electron transfer on photoinduced hydrogen evolution with hydrogenase. J. Photochem. Photobiol., A 101, 4547.
  • 39
    Asakura, N., T. Hiraishi, T. Kamachi and I. Okura (2001) Photoinduced hydrogen evolution with cytochrom c3-viologen-ruthenium(II) triad complex and hydrogenase. J. Mol. Catal. A: Chem. 172, 17.
  • 40
    Ihara, M., H. Nishihara, K.-S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima, D. Honma, T. Kamachi and I. Okura (2006) Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676682.
  • 41
    Krassen, H., A. Schwarze, B. Friedrich, K. Ataka, O. Lenz and J. Heberle (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. Acs Nano 3, 40554061.
  • 42
    Lubner, C. E., R. Grimme, D. A. Bryant and J. H. Golbeck (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49, 404414.
  • 43
    Lubner, C. E., P. Khorzer, P. J. N. Silva, K. A. Vincent, T. Happe, D. A. Bryant and J. H. Golbeck (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49, 1026410266.
  • 44
    Reisner, E., J. C. Fontecilla-Camps and F. A. Armstrong (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun., 550552.
  • 45
    Reisner, E., D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 1846718477.
  • 46
    Capon, J. F., F. Gloaguen, F. Y. Petillon, P. Schollhammer and J. Talarmin (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 253, 14761494.
  • 47
    Tard, C. and C. J. Pickett (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 22452274.
  • 48
    Losse, S., J. G. Vos and S. Rau (2010) Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 24922504.
  • 49
    Dempsey, J. L., B. S. Brunschwig, J. R. Winkler and H. B. Gray (2009) Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 19952004.
  • 50
    Artero, V., M. Chavarot-Kerlidou and M. Fontecave (2011) Splitting water with cobalt. Angew. Chem. Int. Ed. doi: 10.1002/anie.201007987.
  • 51
    Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky (1988) Ru(II) polypyridine complexes—photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85277.
  • 52
    Campagna, S., F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani (2007) Photochemistry and photophysics of coordination compounds: Ruthenium. Top. Curr. Chem. 280, 117214.
  • 53
    Krishnan, C. V. and N. Sutin (1981) Homogeneous catalysis of the photo-reduction of water by visible-light .2. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) bipyridine system. J. Am. Chem. Soc. 103, 21412142.
  • 54
    Fihri, A., V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564567.
  • 55
    Goldsmith, J. I., W. R. Hudson, M. S. Lowry, T. H. Anderson and S. Bernhard (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 75027510.
  • 56
    Zhang, P., M. Wang, Y. Na, X. Li, Y. Jiang and L. Sun (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 12041206.
  • 57
    Fihri, A., V. Artero, A. Pereira and M. Fontecave (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans., 55675569.
  • 58
    Du, P. W., K. Knowles and R. Eisenberg (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 1257612577.
  • 59
    Du, P. W., J. Schneider, G. G. Luo, W. W. Brennessel and R. Eisenberg (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem. 48, 49524962.
  • 60
    Du, P. W., J. Schneider, G. G. Luo, W. W. Brennessel and R. Eisenberg (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem. 48, 49524962.
  • 61
    Wang, X., S. B. Goeb, Z. Ji, N. A. Pogulaichenko and F. N. Castellano (2011) Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Inorg. Chem. 50, 705707.
  • 62
    Probst, B., A. Rodenberg, M. Guttentag, P. Hamm and R. Alberto (2010) A highly stable rhenium-cobalt system for photocatalytic H2 production: Unraveling the performance-limiting steps. Inorg. Chem. 49, 64536460.
  • 63
    Probst, B., C. Kolano, P. Hamm and R. Alberto (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 18361843.
  • 64
    Probst, B., M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 34043412.
  • 65
    Lazarides, T., T. McCormick, P. W. Du, G. G. Luo, B. Lindley and R. Eisenberg (2009) Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 91929194.
  • 66
    Zhang, P., M. Wang, J. Dong, X. Li, F. Wang, L. Wu and L. Sun (2010) Photocatalytic hydrogen production from water by noble-metal-free molecular catalyst systems containing Rose Bengal and the cobaloximes of BFx-bridged oxime ligands. J. Phys. Chem. C. 114, 1586815874.
  • 67
    Ott, S., M. Kritikos, B. Akermark and L. Sun (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew. Chem. Int. Ed. 42, 32853288.
  • 68
    Wolpher, H., M. Borgström, L. Hammarström, J. Bergquist, V. Sundström, S. Styring, L. Sun and B. Akermark (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. Commun. 6, 989991.
  • 69
    Ott, S., M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Akermark, L. Hammarström and L. Sun (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties. Inorg. Chem. 43, 46834692.
  • 70
    Ekström, J., M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L. Erikssin, L. Sun, H.-C. Becker, B. Akermark, L. Hammarström and S. Ott (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 45994606.
  • 71
    Song, L.-C., M.-Y. Tang, F.-H. Su and Q.-M. Hu (2006) A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Angew. Chem. Int. Ed. 45, 11301133.
  • 72
    Song, L.-C., M.-Y. Tang, S.-Z. Mei, J.-H. Huang and Q.-M. Hu (2007) The active site for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer. Organometallics 26, 15751577.
  • 73
    Cui, H., M. Wang, L. Duan and L. Sun (2008) Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. J. Coord. Chem. 61, 18561861.
  • 74
    Gao, W., J. Liu, W. Jiang, M. Wang, L. Weng, B. Akermark and L. Sun (2008) An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production. C. R. Chim. 11, 915921.
  • 75
    Na, Y., J. Pan, M. Wang and L. Sun (2007) Intermolecular electron transfer from photogenerated Ru(bpy)32+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg. Chem. 46, 38133815.
  • 76
    Na, Y., M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 47, 28052810.
  • 77
    Gao, W., J. Sun, T. Akermark, M. Li, L. Eriksson, L. Sun and B. Akermark (2010) Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism. Chem. Eur. J. 16, 25372546.
  • 78
    Streich, D., Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chemistry A European Journal 16, 6063.
  • 79
    Schwartz, L., P. S. Singh, L. Eriksson, R. Lomoth and S. Ott (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. C. R. Chim. 11, 875889.
  • 80
    Razavet, M., V. Artero and M. Fontecave (2005) Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorg. Chem. 44, 47864795.
  • 81
    Baffert, C., V. Artero and M. Fontecave (2007) Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 18171824.
  • 82
    Hu, X. L., B. M. Cossairt, B. S. Brunschwig, N. S. Lewis and J. C. Peters (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem. Commun., 47234725.
  • 83
    Hu, X., B. S. Brunschwig and J. C. Peters (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 89888998.
  • 84
    Pantani, O., E. Anxolabehere-Mallart, A. Aukauloo and P. Millet (2007) Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochem. Commun. 9, 5458.
  • 85
    Hawecker, J., J. M. Lehn and R. Ziessel (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. New J. Chem. 7, 271277.
  • 86
    McCormick, T. M., B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg (2010) Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 1548015483.
  • 87
    Gong, L., J. Wang, H. Li, L. Wang, J. Zhao and Z. Zhu (2011) Acriflavine-cobaloxime-triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine. Catal. Commun. 12, 10991103.
  • 88
    Jacques, P.-A., V. Artero, J. Pécaut and M. Fontecave (2009) Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl Acad. Sci. USA 106, 2062720632.
  • 89
    Zhang, P., M. Chavarot-Kerlidou, P.-A. Jacques, M. Wang, L. Sun, M. Fontecave and V. Artero (2011) Stable cobalt diimine dioxime catalysts for a sustained light-driven H2 production. Submitted for publication.
  • 90
    Kirch, M., J. M. Lehn and J. P. Sauvage (1979) Hydrogen generation by visible-light irradiation of aqueous solutions of metal-complexes—approach to the photochemical conversion and storage of solar energy. Helv. Chim. Acta 62, 13451384.
  • 91
    Lehn, J. M. and R. Ziessel (1982) Photochemical generation of carbon-monoxide and hydrogen by reduction of carbon-dioxide and water under visible-light irradiation. Proc. Natl Acad. Sci. USA 79, 701704.
  • 92
    Chan, S. F., M. Chou, C. Creutz, T. Matsubara and N. Sutin (1981) Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes. J. Am. Chem. Soc. 103, 369379.
  • 93
    Li, X. Q., M. Wang, S. P. Zhang, J. X. Pan, Y. Na, J. H. Liu, B. Akermark and L. C. Sun (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation. J. Phys. Chem. B 112, 81988202.
  • 94
    Song, L. C., L. X. Wang, M. Y. Tang, C. G. Li, H. B. Song and Q. M. Hu (2009) Synthesis, structure, and photoinduced catalysis of [FeFe]-hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety. Organometallics 28, 38343841.
  • 95
    Kluwer, A. M., R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen and J. N. H. Reek (2009) Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proc. Natl Acad. Sci. USA 106, 1046010465.
  • 96
    Wang, W.-G., F. Wang, H.-Y. Wang, G. Si, C.-H. Tung and L.-Z. Wu (2010) Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. Chemistry an Asian Journal 5, 17961803.
  • 97
    Li, C., M. Wang, J. X. Pan, P. Zhang, R. Zhang and L. C. Sun (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J. Organomet. Chem. 694, 28142819.
  • 98
    Zhang, P., M. Wang, C. Li, X. Li, J. Dong and L. Sun (2010) Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chem. Commun. 46, 88068809.
  • 99
    Jasimuddin, S., T. Yamada, K. Fukuju, J. Otsuki and K. Sakai (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium–cobalt systems. Chem. Commun., 84668468.
  • 100
    Krishnan, C. V., B. S. Brunschwig, C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J. Am. Chem. Soc. 107, 20052015.
  • 101
    Schwarz, H. A., C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water by visible-light .4. Cobalt(I) polypyridine complexes—redox and substitution kinetics and thermodynamics in the aqueous 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine series studied by the pulse-radiolysis technique. Inorg. Chem. 24, 433439.
  • 102
    Creutz, C. and N. Sutin (1985) Photogeneration and reactions of cobalt(I) complexes. Coord. Chem. Rev. 64, 321341.
  • 103
    Creutz, C., H. A. Schwarz and N. Sutin (1984) Homogeneous catalysis of the photoreduction of water by visible-light .5. Free-radical route to formation of the metal hydride complex hydridoaquobis(2,2′-bipyridine)cobalt(III). J. Am. Chem. Soc. 106, 30363037.
  • 104
    Lakadamyali, F. and E. Reisner (2011) Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem. Commun. 47, 16951697.
  • 105
    Sala, X., I. Romero, M. Rodriguez, L. Escriche and A. Llobet (2009) Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 28422852.
  • 106
    Romain, S., L. Vigara and A. Llobet (2009) Oxygen–oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 19441953.
  • 107
    Concepcion, J. J., J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer (2009) Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 19541965.
  • 108
    Barber, J. and J. W. Murray (2008) The structure of the Mn4Ca2+ cluster of photosystem II and its protein environment as revealed by X-ray crystallography. Phil. Trans. R. Soc. B 363, 11291138.
  • 109
    Brudvig, G. W. (2008) Water oxidation chemistry of photosystem II. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 12111219.
  • 110
    Dau, H. and I. Zaharieva (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 18611870.
  • 111
    Umena, Y., K. Kawakami, J.-R. Shen and N. Kamiya (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473, 5560.
  • 112
    Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light-driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 13851390.
  • 113
    Badura, A., D. Guschin, B. Esper, T. Kothe, S. Neugebauer, W. Schuhmann and M. Rögner (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20, 10431047.
  • 114
    Rotzinger, F. P., S. Munavalli, P. Comte, J. K. Hurst, M. Gratzel, F.-J. Pern and A. J. Franck (1987) A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2′-bipyridyl-5,5′-dicarboxylic acid). J. Am.Chem. Soc. 109, 66196626.
  • 115
    Comte, P., M. K. Nazeeruddin, F. P. Rotzinger, A. J. Franck and M. Gratzel (1989) Artificial analogues of the oxygen-evolving complex in photosynthesis: The oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L = 2,2′-bipyridyl-4,4′-dicarboxylate. J. Mol. Catal. 52, 6384.
  • 116
    Xu, Y. H., T. Akermark, V. Gyollai, D. P. Zou, L. Eriksson, L. L. Duan, R. Zhang, B. Akermark and L. Sun (2009) A new dinuclear ruthenium complex as an efficient water oxidation catalyst. Inorg. Chem. 48, 27172719.
  • 117
    Xu, Y., A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Åkermark and L. Sun (2010) Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew. Chem. Int. Ed. 122, 89348937.
  • 118
    Duan, L., Y. Xu, M. Gorlov, L. Tong, S. Andersson and L. Sun (2010) Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charge tridentate ligand. Chemistry A European Journal 16, 46594668.
  • 119
    Xu, Y., L. Duan, L. Tong, B. Akermark and L. Sun (2010) Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem. Commun. 46, 65066508.
  • 120
    Duan, L., Y. Xu, P. Zhang, M. Wang and L. Sun (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg. Chem. 49, 209215.
  • 121
    Tseng, H. W., R. Zong, J. T. Muckerman and R. Thummel (2008) Mononuclear ruthenium(II) complexes that catalyze water oxidation. Inorg. Chem. 47, 1176311773.
  • 122
    Duan, L., Y. Xu, L. Tong and L. Sun (2011) CeIV- and light-driven water oxidation by [Ru(terpy)(pic)3]2+ analogues: Catalytic and mechanistic studies. ChemSusChem. 4, 238244.
  • 123
    Li, L., L. L. Duan, Y. H. Xu, M. Gorlov, A. Hagfeldt and L. Sun (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem. Commun. 46, 73077309.
  • 124
    Blakemore, J. D., N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig and R. H. Crabtree (2011) Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 9498.
  • 125
    Roeser, S., P. Farr, F. Bozoglian, M. Martinez-Belmonte, J. Benet-Buchholz and A. Llobet (2011) Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes. ChemSusChem. 4, 197207.
  • 126
    Geletii, Y. V., B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 38963899.
  • 127
    Geletii, Y. V., Z. Q. Huang, Y. Hou, D. G. Musaev, T. Q. Lian and C. L. Hill (2009) Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J. Am. Chem. Soc. 131, 75227523.
  • 128
    Sartorel, A., M. Carraro, G. Scorrano, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard and M. Bonchio (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: A totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 50065007.
  • 129
    Besson, C., Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust and C. L. Hill (2010) Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chem. Commun. 46, 27842786.
  • 130
    La Ganga, G., F. Nastasi, S. Campagna and F. Puntoriero (2009) Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer. Dalton Trans., 99979999.
  • 131
    Huang, Z., Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill and T. Lian (2011) Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 20682071.
  • 132
    Cady, C. W., R. H. Crabtree and G. W. Brudvig (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 252, 444455.
  • 133
    Yagi, M., A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem. Photobiol. Sci. 8, 139147.
  • 134
    Ruttinger, W. and G. C. Dismukes (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 124.
  • 135
    Limburg, J., J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree and G. W. Brudvig (1999) A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 283, 15241527.
  • 136
    Poulsen, A. K., A. Rompel and C. J. McKenzie (2005) Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen-evolving center of photosystem II. Angew. Chem. Int. Ed. 44, 69166920.
  • 137
    Dismukes, G. C., R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F. Swiegers (2009) Development of bioinspired Mn4O4 cubane water oxidation catalysts: Lessons from photosynthesis. Acc. Chem. Res. 42, 19351943.
  • 138
    Yagi, M. and K. Narita (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J. Am. Chem. Soc. 126, 80848085.
  • 139
    Narita, K., T. Kuwaraba, K. Sone, K. Shimizu and M. Yagi (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J. Phys. Chem. B 110, 2310723114.
  • 140
    Yagi, M., M. Toda, S. Yamada and H. Yamazaki (2010) An artificial model of photosynthetic photosystem II: Visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem. Commun. 46, 85948596.
  • 141
    Brimblecombe, R., A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 28922894.
  • 142
    Kocking, R. K., R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey and L. Spiccia (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461466.
  • 143
    DOE (Final report) (2009) Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production.
  • 144
    Maeda, K., M. Higashi, D. L. Lu, R. Abe and K. Domen (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 58585868.
  • 145
    Khaselev, O. and J. A. Turner (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425427.
  • 146
    Borgarello, E., J. Kiwi, E. Pelizetti, M. Visca and M. Gratzel (1981) Sustained water cleavage by visible light. J. Am. Chem. Soc. 103, 63246329.
  • 147
    Le Goff, A., V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin and M. Fontecave (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 13841387.
  • 148
    Tran, P. D., A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave and V. Artero (2011) Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. 50, 13711374.
  • 149
    Flamigni, L., A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti (2007) Photochemistry and photophysics of coordination compounds: Iridium. Top. Curr. Chem. 281, 143203.
  • 150
    Schneider, J., P. Du, P. Jarosz, T. Lazarides, X. Wang, W. W. Brennessel and R. Eisenberg (2009) Cyclometalated 6-phenyl-2,22-bipyridyl (CNN) platinum(II) acetylide complexes: Structure, electrochemistry, photophysics, and oxidative and reductive-quenching studies. Inorg. Chem. 48, 43064316.
  • 151
    Pavlishchuk, V. V. and A. W. Addison (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorg. Chim. Acta 298, 97102.