SEARCH

SEARCH BY CITATION

References

  • 1
    Cukier, R. I. and D. G. Nocera (1998) Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49, 337369.
  • 2
    Hammes-Schiffer, S. (2001) Theoretical perspectives on proton-coupled electron transfer reactions. Acc. Chem. Res. 34, 273281.
  • 3
    Mayer, J. M. (2004) Proton-coupled electron transfer: A reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363390.
  • 4
    Huynh, M. H. V. and T. J. Meyer (2007) Proton-coupled electron transfer. Chem. Rev. 107, 50045064.
  • 5
    Hammes-Schiffer, S. and A. V. Soudackov (2008) Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 1410814123.
  • 6
    Hammes-Schiffer, S., E. Hatcher, H. Ishikita, J. H. Skone and A. V. Soudackov (2008) Theoretical studies of proton-coupled electron transfer: Models and concepts relevant to bioenergetics. Coordin. Chem. Rev. 252, 384394.
  • 7
    Kumar, A. and M. D. Sevilla (2010) Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem. Rev. 110, 70027023.
  • 8
    Mayer, J. M. and I. J. Rhile (2004) Thermodynamics and kinetics of proton-coupled electron transfer: Stepwise vs. concerted pathways. Biochim. Biophys. Acta Bioenerg. 1655, 5158.
  • 9
    Barber, J. (2009) Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185196.
  • 10
    Lewis, N. S. and D. G. Nocera (2006) Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 1572915735.
  • 11
    Nocera, D. G. (2009) Personalized energy: The home as a solar power station and solar gas station. ChemSusChem 2, 387390.
  • 12
    Nocera, D. G. (2009) Living healthy on a dying planet. Chem. Soc. Rev. 38, 1315.
  • 13
    Cukier, R. I. (1994) Mechanism for proton-coupled electron-transfer reactions. J. Phys. Chem. 98, 23772381.
  • 14
    Cukier, R. I. (1996) Proton-coupled electron transfer reactions: Evaluation of rate constants. J. Phys. Chem. 100, 1542815443.
  • 15
    Chang, C. J., M. C. Y. Chang, N. H. Damrauer and D. G. Nocera (2004) Proton-coupled electron transfer: A unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen. Biochem. Biophys. Acta, Bioenerg. 1655, 1328.
  • 16
    Costentin, C., D. H. Evans, M. Robert, J.-M. Savéant and P. S. Singh (2005) Electrochemical approach to concerted proton and electron transfers. Reduction of the water-superoxide ion complex. J. Am. Chem. Soc. 127, 1249012491.
  • 17
    Costentin, C. (2008) Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev. 108, 21452179.
  • 18
    Hammes-Schiffer, S. (2009) Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42, 18811889.
  • 19
    Hazra, A., A. V. Soudackov and S. Hammes-Schiffer (2010) Role of solvent dynamics in ultrafast photoinduced proton-coupled electron transfer reactions in solution. J. Phys. Chem. B 114, 1231912332.
  • 20
    Costentin, C., M. Robert and J. M. Savéant (2010) Concerted proton–electron transfers: Electrochemical and related approaches. Acc. Chem. Res. 43, 10191029.
  • 21
    Hammes-Schiffer, S. and A. A. Stuchebrukhov (2010) Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 69396960.
  • 22
    Sirjoosingh, A. and S. Hammes-Schiffer (2011) Proton-coupled electron transfer versus hydrogen atom transfer: Generation of charge-localized diabatic states. J. Phys. Chem. A 115, 23672377.
  • 23
    Costentin, C., M. Robert and J. M. Savéant (2007) Adiabatic and non-adiabatic concerted proton–electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols. J. Am. Chem. Soc. 129, 99539963.
  • 24
    Tommos, C. and G. T. Babcock (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim. Biophys. Acta, Bioenerg. 1458, 199219.
  • 25
    Meyer, T. J., M. H. V. Huynh and H. H. Thorp (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 46, 52845304.
  • 26
    Rappaport, F. and B. A. Diner (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coordin. Chem. Rev. 252, 259272.
  • 27
    Sjöberg, B. M., P. Reichard, A. Gräslund and A. Ehrenberg (1978) The tyrosine free radical in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 253, 68636865.
  • 28
    Sahlin, M., A. Gräslund, A. Ehrenberg and B. M. Sjöberg (1982) Structure of the tyrosyl radical in bacteriophage T4-induced ribonucleotide reductase. J. Biol. Chem. 257, 366369.
  • 29
    Stubbe, J. and W. A. van der Donk (1998) Protein radicals in enzyme catalysis. Chem. Rev. 98, 705762.
  • 30
    Stubbe, J., D. G. Nocera, C. S. Yee and M. C. Y. Chang (2003) Radical initiation in the class I ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem. Rev. 103, 21672202.
  • 31
    Dietz, R., W. Nastainczyk and H. H. Ruf (1988) Higher oxidation states of prostaglandin H synthase. Eur. J. Biochem. 171, 321328.
  • 32
    Smith, W. L., T. E. Eling, R. J. Kulmacz, L. J. Marnett and A.-I. Tsai (1992) Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase. Biochemistry 31, 37.
  • 33
    Tsai, A.-I., R. J. Kulmacz and G. Palmer (1995) Spectroscopic evidence for reaction of prostaglandin h synthase-1 tyrosyl radical with arachidonic acid. J. Biol. Chem. 270, 1050310508.
  • 34
    Tsai, A.-I., G. Palmer, G. Xiao, D. C. Swinney and R. J. Kulmacz (1998) Structural characterization of arachidonyl radicals formed by prostaglandin H synthase-2 and prostaglandin H synthase-1 reconstituted with mangano protoporphyrin IX. J. Biol. Chem. 273, 38883894.
  • 35
    Whittaker, M. M. and J. W. Whittaker (1990) A tyrosine-derived free radical in apogalactose oxidase. J. Biol. Chem. 265, 96109613.
  • 36
    Himo, F., L. A. Eriksson, F. Maseras and P. E. M. Siegbahn (2000) Catalytic mechanism of galactose oxidase: A theoretical study. J. Am. Chem. Soc. 122, 80318036.
  • 37
    Whittaker, J. W. (2003) Free radical catalysis by galactose oxidase. Chem. Rev. 103, 23472364.
  • 38
    Kumar, M. and P. M. Kozlowski (2009) Role of tyrosine residue in the activation of Co-C bond in coenzyme B12-dependent enzymes: Another case of proton-coupled electron transfer? J. Phys. Chem. B 113, 90509054.
  • 39
    Kozlowski, P. M., T. Kamachi, M. Kumar, T. Nakayama and K. Yoshizawa (2010) Theoretical analysis of the diradical nature of adenosylcobalamin cofactor-tyrosine complex in B12-dependent mutases: Inspiring PCET-driven enzymatic catalysis. J. Phys. Chem. B 114, 59285939.
  • 40
    Babcock, G. T. (1999) How oxygen is activated and reduced in respiration. Proc. Natl Acad. Sci. USA 96, 1297112973.
  • 41
    Ferguson-Miller, S. and G. T. Babcock (1996) Heme/copper terminal oxidases. Chem. Rev. 96, 28892908.
  • 42
    Proshlyakov, D. A., M. A. Pressler, C. DeMaso, J. F. Leykam, D. L. DeWitt and G. T. Babcock (2000) Oxygen activation and reduction in respiration: Involvement of redox-active tyrosine 244. Science 290, 15881591.
  • 43
    Janes, S. M., D. Mu, D. Wemmer, A. J. Smith, S. Kaur, D. Maltby, A. L. Burlingame and J. P. Klinman (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248, 981987.
  • 44
    Milligan, J. R., J. A. Aguilera, O. Hoang, A. Ly, N. Q. Tran and J. F. Ward (2004) Repair of guanyl radicals in plasmid DNA by electron transfer is coupled to proton transfer. J. Am. Chem. Soc. 126, 16821687.
  • 45
    Morozova, O. B., A. S. Kiryutin, R. Z. Sagdeev and A. V. Yurkovskaya (2007) Electron transfer between guanosine radical and amino acids in aqueous solution. 1. Reduction of guanosine radical by tyrosine. J. Phys. Chem. B 111, 74397448.
  • 46
    Do, T. T., V. J. Tang, J. A. Aguilera and J. R. Milligan (2010) Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates. Radiat. Phys. Chem. 79, 11441148.
  • 47
    Williams, L. L. and R. D. Webster (2004) Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation. J. Am. Chem. Soc. 126, 1244112450.
  • 48
    Cotelle, N., P. Hapiot, J. Pinson, C. Rolando and H. Vézin (2005) Polyphenols deriving from chalcones: Investigations of redox activities. J. Phys. Chem. B 109, 2372023729.
  • 49
    Webster, R. D. (2007) New insights into the oxidative electrochemistry of vitamin E. Acc. Chem. Res. 40, 251257.
  • 50
    Rene, A., M.-L. Abasq, D. Hauchard and P. Hapiot (2010) How do phenolic compounds react toward superoxide ion? A simple electrochemical method for evaluating antioxidant capacity Anal. Chem. 82, 87038710.
  • 51
    Nelson, N. and C. F. Yocum (2006) Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521565.
  • 52
    Barry, B. A. and G. T. Babcock (1987) Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc. Natl Acad. Sci. USA 84, 70997103.
  • 53
    Debus, R. J., B. A. Barry, I. Sithole, G. T. Babcock and L. McIntosh (1988) Directed mutagenesis indicates that the donor to P 680+ in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27, 90719074.
  • 54
    Boerner, R. J. and B. A. Barry (1993) Isotopic labeling and EPR spectroscopy show that a tyrosine residue is the terminal electron donor, Z, in manganese-depleted photosystem II preparations. J. Biol. Chem. 268, 1715117154.
  • 55
    Sauer, K. and V. K. Yachandra (2004) The water-oxidation complex in photosynthesis. Biochim. Biophys. Acta, Bioenerg. 1655, 140148.
  • 56
    Barber, J. (2008) Crystal structure of the oxygen-evolving complex of photosystem II. Inorg. Chem. 47, 17001710.
  • 57
    Umena, Y., K. Kawakami, J.-R. Shen and N. Kamiya (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9A. Nature 473, 5560.
  • 58
    Kok, B., B. Forbush and M. McGloin (1970) Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem. Photobiol. 11, 457475.
  • 59
    Barry, B. A. (1993) The role of redox-active amino acids in the photosynthetic water-oxidizing complex. Photochem. Photobiol. 57, 179188.
  • 60
    Gilchrist, M. L., J. A. Ball, D. W. Randall and R. D. Britt (1995) Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc. Natl Acad. Sci. USA 92, 95459549.
  • 61
    Hoganson, C. W., N. Lydakis-Simantiris, X.-S. Tang, C. Tommos, K. Warncke, G. T. Babcock, B. A. Diner, J. McCracken and S. Styring (1995) A hydrogen-atom abstraction model for the function of YZ in photosynthetic oxygen evolution. Photosynth. Res. 46, 177184.
  • 62
    Babcock, G. T., M. Espe, C. Hoganson, N. Lydakis-Simantiris, J. McCracken, W. Shi, S. Styring, C. Tommos and K. Warncke (1997) Tyrosyl radicals in enzyme catalysis: Some properties and a focus on photosynthetic water oxidation. Acta Chem. Scand. 51, 533540.
  • 63
    Hoganson, C. W. and G. T. Babcock (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277, 19531956.
  • 64
    Tommos, C. and G. T. Babcock (1998) Oxygen production in nature: A light-driven metalloradical enzyme process. Acc. Chem. Res. 31, 1825.
  • 65
    Rappaport, F. and J. Lavergne (2001) Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim. Biophys. Acta, Bioenerg. 1503, 246259.
  • 66
    Dixon, W. T. and D. Murphy (1976) Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J. Chem. Soc., Faraday Trans. 2(72), 12211230.
  • 67
    Harriman, A. (1987) Further comments on the redox potentials of tryptophan and tyrosine. J. Phys. Chem. 91, 61026104.
  • 68
    Krishtalik, L. I. (1986) Energetics of multielectron reactions. Photosynthetic oxygen evolution. Biochim. Biophys. Acta, Bioenerg. 849, 162171.
  • 69
    Thorp, H. H., J. E. Sarneski, G. W. Brudvig and R. H. Crabtree (1989) Proton-coupled electron transfer in manganese complex [(bpy)2Mn(O)2Mn(bpy)2]3+. J. Am. Chem. Soc. 111, 92499250.
  • 70
    Krishtalik, L. I. (1990) Activation energy of photosynthetic oxygen evolution: An attempt at theoretical analysis. Bioelectroch. Bioener. 23, 249263.
  • 71
    Diner, B. A., D. A. Force, D. W. Randall and R. D. Britt (1998) Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine YZ in Mn-depleted core complexes of photosystem II. Biochemistry 37, 1793117943.
  • 72
    Renger, G. (2004) Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. Biochim. Biophys. Acta, Bioenerg. 1655, 195204.
  • 73
    McEvoy, J. P. and G. W. Brudvig (2006) Water-splitting chemistry of photosystem II. Chem. Rev. 106, 44554483.
  • 74
    Babcock, G. T., B. A. Barry, R. J. Debus, C. W. Hoganson, M. Atamian, L. McIntosh, I. Sithole and C. F. Yocum (1989) Water oxidation in photosystem II: From radical chemistry to multielectron chemistry. Biochemistry 28, 95579565.
  • 75
    Debus, R. J., B. A. Barry, G. T. Babcock and L. McIntosh (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc. Natl Acad. Sci. USA 85, 427430.
  • 76
    Vermass, W. F. J., A. W. Rutherford and O. Hansson (1988) Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc. Natl Acad. Sci. USA 85, 84778481.
  • 77
    Debus, R. J. (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of photosystem II. Biochim. Biophys. Acta, Bioenerg. 1503, 164186.
  • 78
    Rutherford, A. W., A. Boussac and P. Faller (2004) The stable tyrosyl radical in photosystem II: Why D? Biochim. Biophys. Acta, Bioenerg. 1655, 222230.
  • 79
    Mino, H. and A. Kawamori (2008) The differences in microenvironments and functions of tyrosine radicals YZ and YD in photosystem II studied by EPR. Photosynth. Res. 98, 151157.
  • 80
    Tang, X. S., D. A. Chisholm, G. C. Dismukes, G. W. Brudvig and B. A. Diner (1993) Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry 32, 1374213748.
  • 81
    Warncke, K., J. McCracken and G. T. Babcock (1994) Structure of the YD tyrosine radical in photosystem II as revealed by 2H Electron Spin Echo Envelope Modulation (ESEEM) spectroscopic analysis of hydrogen hyperfine interactions. J. Am. Chem. Soc. 116, 73327340.
  • 82
    Un, S., X.-S. Tang and B. A. Diner (1996) 245 GHz high-field EPR study of tyrosine-Do and tyrosine-Zo in mutants of photosystem II. Biochemistry 35, 679684.
  • 83
    Faller, P., R. J. Debus, K. Brettel, M. Sugiura, A. W. Rutherford and A. Boussac (2001) Rapid formation of the stable tyrosyl radical in photosystem II. Proc. Natl Acad. Sci. USA 98, 1436814373.
  • 84
    Jenson, D. L., A. Evans and B. A. Barry (2007) Proton-coupled electron transfer and tyrosine D of photosystem II. J. Phys. Chem. B 111, 1259912604.
  • 85
    Jenson, D. L. and B. A. Barry (2009) Proton-coupled electron transfer in photosystem II: Proton inventory of a redox active tyrosine. J. Am. Chem. Soc. 131, 1056710573.
  • 86
    Campbell, K. A., J. M. Peloquin, B. A. Diner, X.-S. Tang, D. A. Chisholm and R. D. Britt (1997) The t-Nitrogen of D2 histidine 189 is the hydrogen bond donor to the tyrosine radical YD of photosystem II. J. Am. Chem. Soc. 119, 47874788.
  • 87
    Kim, S., J. Liang and B. A. Barry (1997) Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II. Proc. Natl Acad. Sci. USA 94, 1440614411.
  • 88
    Babcock, G. T., R. E. Blankenship and K. Sauer (1976) Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett. 61, 286289.
  • 89
    Dekker, J. P., H. J. Van Gorkom, M. Brok and L. Ouwehand (1984) Optical characterization of photosystem II electron donors. Biochim. Biophys. Acta, Bioenerg. 764, 301309.
  • 90
    Moore, G. F., M. Hambourger, M. Gervaldo, O. G. Poluektov, T. Rajh, D. Gust, T. A. Moore and A. L. Moore (2008) A bioinspired construct that mimics the proton coupled electron transfer between P680•+ and the TyrZ–His190 pair of photosystem II. J. Am. Chem. Soc. 130, 1046610467.
  • 91
    Siegbahn, P. E. M. and M. R. A. Blomberg (2004) Important roles of tyrosines in Photosystem II and cytochrome oxidase. Biochim. Biophys. Acta, Bioenerg. 1655, 4550.
  • 92
    Hammarström, L., L. Sun, B. Akermark and S. Styring (1998) Artificial photosynthesis: Towards functional mimics of photosystem II? Biochim. Biophys. Acta, Bioenerg. 1365, 193199.
  • 93
    Magnuson, A., H. Berglund, P. Korall, L. Hammarström, B. Akermark, S. Styring and L. Sun (1997) Mimicking electron transfer reactions in photosystem II: Synthesis and photochemical characterization of a Ruthenium(II) tris(bipyridyl) complex with a covalently linked tyrosine. J. Am. Chem. Soc. 119, 1072010725.
  • 94
    Sun, L., M. K. Raymond, A. Magnuson, D. LeGourriérec, M. Tamma, M. Abrahamsson, P. H. Kenéz, J. Martensson, G. Stenhagen, L. Hammarström, S. Styring and B. Akermark (2000) Towards an artificial model for Photosystem II: A manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative. J. Inorg. Biochem. 78, 1522.
  • 95
    Magnuson, A., Y. Frapart, M. Abrahamsson, O. Horner, B. Akermark, L. Sun, J.-J. Girerd, L. Hammarström and S. Styring (1999) A biomimetic model system for the water oxidizing triad in photosystem II. J. Am. Chem. Soc. 121, 8996.
  • 96
    Sjödin, M., S. Styring, B. Akermark, L. Sun and L. Hammarström (2000) Proton-coupled electron transfer from tyrosine in a tyrosine–ruthenium-tris-bipyridine complex: Comparison with tyrosine Z oxidation in photosystem II. J. Am. Chem. Soc. 122, 39323936.
  • 97
    Costentin, C., M. Robert and J.-M. Savéant (2006) Electrochemical and homogeneous proton-coupled electron transfers: Concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer. J. Am. Chem. Soc. 128, 45524553.
  • 98
    Costentin, C., M. Robert and J. M. Savéant (2007) Concerted proton–electron transfer reactions in water. Are the driving force and rate constant depending on ph when water acts as proton donor or acceptor? J. Am. Chem. Soc. 129, 58705879.
  • 99
    Fecenko, C. J., H. H. Thorp and T. J. Meyer (2007) The role of free energy change in coupled electron–proton transfer. J. Am. Chem. Soc. 129, 1509815099.
  • 100
    Song, N. and D. M. Stanbury (2008) Proton-coupled electron-transfer oxidation of phenols by hexachloroiridate(IV). Inorg. Chem. 47, 1145811460.
  • 101
    Zouni, A., H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger and P. Orth (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409, 739743.
  • 102
    Kamiya, N. and J.-R. Shen (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. Proc. Natl Acad. Sci. USA 100, 98103.
  • 103
    Ferreira, K. N., T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303, 18311838.
  • 104
    Loll, B., J. Kern, W. Saenger, A. Zouni and J. Biesiadka (2005) Towards complete cofactor arrangement in the 3.0A resolution structure of photosystem II. Nature 438, 10401044.
  • 105
    Ott, S., M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Akermark, L. Hammarström and L. Sun (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties. Inorg. Chem. 43, 46834692.
  • 106
    Sjödin, M., R. Ghanem, T. Polivka, J. Pan, S. Styring, L. Sun, V. Sundström and L. Hammarström (2004) Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Phys. Chem. Chem. Phys. 6, 48514858.
  • 107
    Sjödin, M., S. Styring, H. Wolpher, Y. Xu, L. Sun and L. Hammarström (2005) Switching the redox mechanism: Models for proton-coupled electron transfer from tyrosine and tryptophan. J. Am. Chem. Soc. 127, 38553863.
  • 108
    Xu, Y., G. Eilers, M. Borgström, J. Pan, M. Abrahamsson, A. Magnuson, R. Lomoth, J. Bergquist, T. Polivka, L. Sun, V. Sundström, S. Styring, L. Hammarström and B. Akermark (2005) Synthesis and characterization of dinuclear ruthenium complexes covalently linked to Ru(II) tris-bipyridine: An approach to mimics of the donor side of photosystem II. Chem. Eur. J. 11, 730573014.
  • 109
    Lomoth, R., A. Magnuson, M. Sjödin, P. Huang, S. Styring and L. Hammarström (2006) Mimicking the electron donor side of Photosystem II in artificial photosynthesis. Photosynth. Res. 87, 2540.
  • 110
    Sjödin, M., T. Irebo, J. E. Utas, J. Lind, G. Merenyi, B. Akermark and L. Hammarström (2006) Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols. J. Am. Chem. Soc. 128, 1307613080.
  • 111
    Hammarström, L. and S. Styring (2008) Coupled electron transfers in artificial photosynthesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 363, 12831291.
  • 112
    Irebo, T., O. Johansson and L. Hammarström (2008) The rate ladder of proton-coupled tyrosine oxidation in water: A systematic dependence on hydrogen bonds and protonation state. J. Am. Chem. Soc. 130, 91949195.
  • 113
    Johannissen, L. O., T. Irebo, M. Sjödin, O. Johansson and L. Hammarström (2009) The kinetic effect of internal hydrogen bonds on proton-coupled electron transfer from phenols: A theoretical analysis with modeling of experimental data. J. Phys. Chem. B 113, 1621416225.
  • 114
    Zhang, M.-T. and L. Hammarström (2011) Proton-coupled electron transfer from tryptophan: A concerted mechanism with water as proton acceptor. J. Am. Chem. Soc. 133, 88068809.
  • 115
    Costentin, C., M. Robert, J.-M. Savéant and A.-L. Teillout (2009) Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: Electrochemistry of [OsII(bpy)2py(OH2)]2+ in water. Proc. Natl Acad. Sci. USA 106, 1182911836.
  • 116
    Bonin, J., C. Costentin, C. Louault, M. Robert, M. Routier and J.-M. Savéant (2010) Intrinsic reactivity and driving force dependence in concerted proton–electron transfers to water illustrated by phenol oxidation. Proc. Natl Acad. Sci. USA 107, 33673375.
  • 117
    Costentin, C., M. Robert and J.-M. Savéant (2010) Concerted proton–electron transfers in the oxidation of phenols. Phys. Chem. Chem. Phys. 12, 1117911190.
  • 118
    Irebo, T., S. Y. Reece, M. Sjödin, D. G. Nocera and L. Hammarström (2007) Proton-coupled electron transfer of tyrosine oxidation: Buffer dependence and parallel mechanisms. J. Am. Chem. Soc. 129, 1546215464.
  • 119
    Bonin, J., C. Costentin, C. Louault, M. Robert and J.-M. Savéant (2011) Water (in water) as an intrinsically efficient proton acceptor in concerted proton electron transfers. J. Am. Chem. Soc. 133, 66686674.
  • 120
    Bonin, J., C. Costentin, M. Robert and J.-M. Savéant (2011) Pyridine as proton acceptor in the concerted proton electron transfer oxidation of phenol. Org. Biomol. Chem. 9, 40644069.
  • 121
    Stoyanov, E. S., I. V. Stoyanova and C. A. Reed (2010) The structure of the hydrogen ion (Haq+) in water. J. Am. Chem. Soc. 132, 14841485.
  • 122
    Cox, M. J., R. L. A. Timmer, H. J. Bakker, S. Park and N. Agmon (2009) Distance-dependent proton transfer along water wires connecting acid–base pairs. J. Phys. Chem. A 113, 65996606.
  • 123
    Agmon, N. (1995) The Grotthuss mechanism. Chem. Phys. Lett. 244, 456462.
  • 124
    Hoganson, C. W. and C. Tommos (2004) The function and characteristics of tyrosyl radical cofactors. Biochim. Biophys. Acta, Bioenerg. 1655, 116122.
  • 125
    Sibert, R., M. Josowicz, F. Porcelli, G. Veglia, K. Range and B. A. Barry (2007) Proton-coupled electron transfer in a biomimetic peptide as a model of enzyme regulatory mechanisms. J. Am. Chem. Soc. 129, 43934400.
  • 126
    Zieba, A. A., C. Richardson, C. Lucero, S. D. Dieng, Y. M. Gindt and J. P. M. Schelvis (2011) Evidence for concerted electron proton transfer in charge recombination between FADH and 306Trp in Escherichia coli photolyase. J. Am. Chem. Soc. 133, 78247836.
  • 127
    Winkler, J. R. and H. B. Gray (1992) Electron transfer in ruthenium-modified proteins. Chem. Rev. 92, 369379.
  • 128
    Gray, H. B. and J. R. Winkler (1996) Electron transfer in proteins. Annu. Rev. Biochem. 65, 537561.
  • 129
    Nara, S. J., L. Valgimigli, G. F. Pedulli and D. A. Pratt (2010) Tyrosine analogs for probing proton-coupled electron transfer processes in peptides and proteins. J. Am. Chem. Soc. 132, 863872.
  • 130
    Jordan, A. and P. Reichard (1998) Ribonucleide reductases. Annu. Rev. Biochem. 67, 7198.
  • 131
    Thelander, L. (1973) Physicochemical characterization of ribonucleoside diphosphate reductase from Escherichia coli. J. Biol. Chem. 248, 45914601.
  • 132
    Thelander, L. and P. Reichard (1979) Reduction of ribonucleotides. Annu. Rev. Biochem. 48, 133158.
  • 133
    Seyedsayamdost, M. R. and J. Stubbe (2006) Site-specific replacement of Y356 with 3,4-dihydroxyphenylalanine in the B2 subunit of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 128, 25222523.
  • 134
    Uhlin, U. and H. Eklund (1994) Structure of ribonucleotide reductase protein R1. Nature 370, 533539.
  • 135
    Bennati, M., J. H. Robblee, V. Mugnaini, J. Stubbe, J. H. Freed and P. Borbat (2005) EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 127, 1501415015.
  • 136
    Chang, M. C. Y. (2004) Proton-Coupled Electron Transfer in the Esherischia Coli Ribonucleide Reductase. PhD Thesis, Massachusetts Institute of Technology, Cambridge.
  • 137
    Chang, M. C. Y., C. S. Yee, J. Stubbe and D. G. Nocera (2004) Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proc. Natl Acad. Sci. USA 101, 68826887.
  • 138
    Reece, S. Y., M. R. Seyedsayamdost, J. Stubbe and D. G. Nocera (2007) Photoactive peptides for light-initiated tyrosyl radical generation and transport into ribonucleotide reductase. J. Am. Chem. Soc. 129, 85008509.
  • 139
    Reece, S. Y., M. R. Seyedsayamdost, J. Stubbe and D. G. Nocera (2007) Direct observation of a transient tyrosine radical competent for initiating turnover in a photochemical ribonucleotide reductase. J. Am. Chem. Soc. 129, 1382813830.
  • 140
    Reece, S. Y., D. A. Lutterman, M. R. Seyedsayamdost, J. Stubbe and D. G. Nocera (2009) Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase. Biochemistry 48, 58325838.
  • 141
    Reece, S. Y. and D. G. Nocera (2009) Proton-coupled electron transfer in biology: Results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673699.
  • 142
    Seyedsayamdost, M. R., C. S. Yee, S. Y. Reece, D. G. Nocera and J. Stubbe (2006) pH rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: Evidence that Y356 is a redox-active amino acid along the radical propagation pathway. J. Am. Chem. Soc. 128, 15621568.
  • 143
    Seyedsayamdost, M. R. and J. Stubbe (2007) Forward and reverse electron transfer with the Y356DOPA-B2 heterodimer of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 129, 22262227.
  • 144
    Reece, S. Y., J. Stubbe and D. G. Nocera (2005) pH dependence of charge transfer between tryptophan and tyrosine in dipeptides. Biochim. Biophys. Acta, Bioenerg. 1706, 232238.
  • 145
    Seyedsayamdost, M. R., S. Y. Reece, D. G. Nocera and J. Stubbe (2006) Mono-, di-, tri-, and tetra-substituted fluorotyrosines: New probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 15691579.
  • 146
    Reece, S. Y. and D. G. Nocera (2005) Direct tyrosine oxidation using the MLCT excited states of rhenium polypyridyl complexes. J. Am. Chem. Soc. 127, 94489458.
  • 147
    Reece, S. Y., M. R. Seyedsayamdost, J. Stubbe and D. G. Nocera (2006) Electron transfer reactions of fluorotyrosyl radicals. J. Am. Chem. Soc. 128, 1365413655.
  • 148
    Tsukihara, T., H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono and S. Yoshikawa (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, 11361144.
  • 149
    Chan, S. I. (2010) Proton pumping in cytochrome c oxidase: The coupling between proton and electron gating. Proc. Natl Acad. Sci. USA 107, 85058506.
  • 150
    Proshlyakov, D. A., M. A. Pressler and G. T. Babcock (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc. Natl Acad. Sci. USA 95, 80208025.
  • 151
    Kaila, V. R. I., M. I. Verkhovsky and M. Wikstrom (2010) Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 110, 70627081.
  • 152
    Kaila, V. R. I., V. Sharma and M. Wikström (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochim. Biophys. Acta, Bioenerg. 1807, 8084.
  • 153
    Yoshikawa, S., K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki and T. Tsukihara (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 17231729.
  • 154
    Zaslavsky, D. and R. B. Gennis (2000) Proton pumping by cytochrome oxidase: Progress, problems and postulates. Biochim. Biophys. Acta, Bioenerg. 1458, 164179.
  • 155
    Murgida, D. H. and P. Hildebrandt (2001) Proton-coupled electron transfer of cytochrome c. J. Am. Chem. Soc. 123, 40624068.
  • 156
    Gennis, R. B. (2004) Coupled proton and electron transfer reactions in cytochrome oxidase. Front. Biosci. 9, 581591.
  • 157
    Belevich, I., M. I. Verkhovsky and M. Wikström (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440, 829832.
  • 158
    Offenbacher, A., K. N. White, I. Sen, A. G. Oliver, J. P. Konopelski, B. A. Barry and O. Einarsdottir (2009) A spectroscopic investigation of a tridentate Cu-complex mimicking the tyrosine–histidine cross-link of cytochrome c oxidase. J. Phys. Chem. B 113, 74077417.
  • 159
    Iwaki, M., A. Puustinen, M. Wikström and P. R. Rich (2006) Structural and chemical changes of the PM intermediate of Paracoccus denitrificans cytochrome c oxidase revealed by IR spectroscopy with labeled tyrosines and histidine. Biochemistry 45, 1087310885.
  • 160
    Gorbikova, E. A., I. Belevich, M. Wikström and M. I. Verkhovsky (2008) The proton donor for O-O bond scission by cytochrome c oxidase. Proc. Natl Acad. Sci. USA 105, 1073310737.
  • 161
    Gorbikova, E. A., M. Wikström and M. I. Verkhovsky (2008) The protonation state of the cross-linked tyrosine during the catalytic cycle of cytochrome c oxidase. J. Biol. Chem. 283, 3490734912.
  • 162
    Lee, H. J., E. Svahn, J. M. J. Swanson, H. Lepp, G. A. Voth, P. Brzezinski and R. B. Gennis (2010) Intricate role of water in proton transport through cytochrome c oxidase. J. Am. Chem. Soc. 132, 1622516239.
  • 163
    Brzezinski, P. and M. T. Wilson (1997) Photochemical electron injection into redox-active proteins. Proc. Natl Acad. Sci. USA 94, 61766179.
  • 164
    Nilsson, T. (1992) Photoinduced electron transfer from tris(2,2′-bipyridyl)ruthenium to cytochrome c oxidase. Proc. Natl Acad. Sci. USA 89, 64976501.
  • 165
    Winterle, J. S. and Ó. Einarsdóttir (2006) Photoreactions of cytochrome c oxidase. Photochem. Photobiol. 82, 711719.
  • 166
    Zaslavsky, D., A. D. Kaulen, I. A. Smirnova, T. Vygodina and A. A. Konstantinov (1993) Flash-induced membrane potential generation by cytochrome c oxidase. FEBS Lett. 336, 389393.
  • 167
    Voicescu, M., Y. El Khoury, D. Martel, M. Heinrich and P. Hellwig (2009) Spectroscopic analysis of tyrosine derivatives: On the role of the tyrosine–histidine covalent linkage in cytochrome c oxidase. J. Phys. Chem. B 113, 1342913436.
  • 168
    Olsson, M. H. M., P. E. M. Siegbahn, M. R. A. Blomberg and A. Warshel (2007) Exploring pathways and barriers for coupled ET/PT in cytochrome c oxidase: A general framework for examining energetics and mechanistic alternatives. Biochim. Biophys. Acta, Bioenerg. 1767, 244260.
  • 169
    Belevich, I., D. A. Bloch, N. Belevich, M. Wikström and M. I. Verkhovsky (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc. Natl Acad. Sci. USA 104, 26852690.
  • 170
    Barker, S., M. Weinfeld and D. Murray (2005) DNA-protein crosslinks: Their induction, repair, and biological consequences. Mutat. Res.-Rev. Mutat. 589, 111135.
  • 171
    Kanvah, S., J. Joseph, G. B. Schuster, R. N. Barnett, C. L. Cleveland and U. Landman (2010) Oxidation of DNA: Damage to nucleobases. Acc. Chem. Res. 43, 280287.
  • 172
    Hush, N. S. and A. S. Cheung (1975) Ionization potentials and donor properties of nucleic acid bases and related compounds. Chem. Phys. Lett. 34, 1113.
  • 173
    Seidel, C. A. M., A. Schulz and M. H. M. Sauer (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100, 55415553.
  • 174
    Cadet, J., T. Douki and J.-L. Ravanat (2008) Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 10751083.
  • 175
    Perrier, S., J. Hau, D. Gasparutto, J. Cadet, A. Favier and J.-L. Ravanat (2006) Characterization of lysine–guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide. J. Am. Chem. Soc. 128, 57035710.
  • 176
    Schuster, G. B. (2000) Long-range charge transfer in DNA: Transient structural distortions control the distance dependence. Acc. Chem. Res. 33, 253260.
  • 177
    Genereux, J. C. and J. K. Barton (2010) Mechanisms for DNA charge transport. Chem. Rev. 110, 16421662.
  • 178
    Hall, D. B., R. E. Holmlin and J. K. Barton (1996) Oxidative DNA damage through long-range electron transfer. Nature 382, 731735.
  • 179
    Dandliker, P. J., R. E. Holmlin and J. K. Barton (1997) Oxidative thymine dimer repair in the DNA helix. Science 275, 14651468.
  • 180
    Morozova, O. B., A. S. Kiryutin and A. V. Yurkovskaya (2008) Electron transfer between guanosine radicals and amino acids in aqueous solution. II. Reduction of guanosine radicals by tryptophan. J. Phys. Chem. B 112, 27472754.
  • 181
    Morozova, O. B. and A. V. Yurkovskaya (2010) Intramolecular electron transfer in the photooxidized peptides tyrosine–histidine and histidine–tyrosine: A time-resolved CIDNP study. Angew. Chem. Int. Ed. 49, 79967999.
  • 182
    Milligan, J. R., N. Q. Tran, A. Ly and J. F. Ward (2004) Peptide repair of oxidative DNA damage. Biochemistry 43, 51025108.
  • 183
    Ly, A., N. Q. Tran, J. F. Ward and J. R. Milligan (2004) Repair of oxidative guanine damage in plasmid DNA by indoles involves proton transfer between complementary bases. Biochemistry 43, 90989104.
  • 184
    Ly, A., S. L. Bandong, N. Q. Tran, K. J. Sullivan and J. R. Milligan (2005) Reactivity of DNA guanyl radicals with phenolate anions. J. Phys. Chem. B 109, 1336813374.
  • 185
    Fukuzumi, S., H. Miyao, K. Ohkubo and T. Suenobu (2005) Electron-transfer oxidation properties of DNA bases and DNA oligomers. J. Phys. Chem. A 109, 32853294.
  • 186
    Stemp, E. D. A., M. R. Arkin and J. K. Barton (1997) Oxidation of guanine in DNA by Ru(phen)2(dppz)3+ using the flash-quench technique. J. Am. Chem. Soc. 119, 29212925.
  • 187
    Wan, C., T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton and A. H. Zewail (1999) Femtosecond dynamics of DNA-mediated electron transfer. Proc. Natl Acad. Sci. USA 96, 60146019.
  • 188
    Wan, C., T. Fiebig, O. Schiemann, J. K. Barton and A. H. Zewail (2000) Femtosecond direct observation of charge transfer between bases in DNA. Proc. Natl Acad. Sci. USA 97, 1405214055.
  • 189
    Tanaka, M., B. Elias and J. K. Barton (2010) DNA-mediated electron transfer in naphthalene-modified oligonucleotides. J. Org. Chem. 75, 24232428.
  • 190
    Genereux, J. C., A. K. Boal and J. K. Barton (2010) DNA-mediated charge transport in redox sensing and signaling. J. Am. Chem. Soc. 132, 891905.
  • 191
    Mantz, Y. A., F. L. Gervasio, T. Laino and M. Parrinello (2007) Solvent effects on charge spatial extent in DNA and implications for transfer. Phys. Rev. Lett. 99, 058104.
  • 192
    Shafirovich, V. Y., S. H. Courtney, N. Ya and N. E. Geacintov (1995) Proton-coupled photoinduced electron transfer, deuterium isotope effects, and fluorescence quenching in noncovalent benzo[a]pyrenetetraol-nucleoside complexes in aqueous solutions. J. Am. Chem. Soc. 117, 49204929.
  • 193
    Shafirovich, V., A. Dourandin, W. Huang, N. P. Luneva and N. E. Geacintov (1999) Oxidation of guanine at a distance in oligonucleotides induced by two-photon photoionization of 2-aminopurine. J. Phys. Chem. B 103, 1092410933.
  • 194
    Shafirovich, V., A. Dourandin, N. P. Luneva, C. Singh, F. Kirigin and N. E. Geacintov (1999) Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer proflavine. Photochem. Photobiol. 69, 265274.
  • 195
    Kuzmin, V. A., A. Dourandin, V. Shafirovich and N. E. Geacintov (2000) Proton-coupled electron transfer in the oxidation of guanines by an aromatic pyrenyl radical cation in aqueous solutions. Phys. Chem. Chem. Phys. 2, 15311535.
  • 196
    Shafirovich, V., A. Dourandin, W. Huang, N. P. Luneva and N. E. Geacintov (2000) Electron transfer at a distance induced by site-selective photoionization of 2-aminopurine in oligonucleotides and investigated by transient absorption techniques. Phys. Chem. Chem. Phys. 2, 43994408.
  • 197
    Shafirovich, V., A. Dourandin, N. P. Luneva and N. E. Geacintov (2000) The kinetic deuterium isotope effect as a probe of a proton coupled electron transfer mechanism in the oxidation of guanine by 2-aminopurine radicals. J. Phys. Chem. B 104, 137139.
  • 198
    Shafirovich, V., A. Dourandin, N. P. Luneva and N. E. Geacintov (2000) Acid–base equilibria in aqueous solutions of 2-aminopurine radical cations generated by two-photon photoionization. J. Chem. Soc., Perkin Trans. 2, 271275.
  • 199
    Shafirovich, V., J. Cadet, D. Gasparutto, A. Dourandin, W. Huang and N. E. Geacintov (2001) Direct spectroscopic observation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine radicals in double-stranded DNA generated by one-electron oxidation at a distance by 2-aminopurine radicals. J. Phys. Chem. B 105, 586592.
  • 200
    Shafirovich, V., A. Dourandin and N. E. Geacintov (2001) Proton-coupled electron-transfer reactions at a distance in DNA duplexes: Kinetic deuterium isotope effect. J. Phys. Chem. B 105, 84318435.
  • 201
    Misiaszek, R., C. Crean, A. Joffe, N. E. Geacintov and V. Shafirovich (2004) Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J. Biol. Chem. 279, 3210632115.
  • 202
    Shafirovich, V. and N. E. Geacintov (2004) Proton-coupled electron transfer reactions at a distance in DNA duplexes. Top. Curr. Chem. 237, 129158.
  • 203
    Yun, B. H., Y. A. Lee, S. K. Kim, V. Kuzmin, A. Kolbanovskiy, P. C. Dedon, N. E. Geacintov and V. Shafirovich (2007) Photosensitized oxidative DNA damage: From hole injection to chemical product formation and strand cleavage. J. Am. Chem. Soc. 129, 93219332.
  • 204
    Weatherly, S. C., I. V. Yang, P. A. Armistead and H. H. Thorp (2003) Proton-coupled electron transfer in guanine oxidation: Effects of isotope, solvent, and chemical modification. J. Phys. Chem. B 107, 372378.
  • 205
    Weatherly, S. C., I. V. Yang and H. H. Thorp (2001) Proton-coupled electron transfer in duplex DNA: Driving force dependence and isotope effects on electrocatalytic oxidation of guanine. J. Am. Chem. Soc. 123, 12361237.
  • 206
    Kobayashi, K., R. Yamagami and S. Tagawa (2008) Effect of base sequence and deprotonation of guanine cation radical in DNA. J. Phys. Chem. B 112, 1075210757.
  • 207
    Adhikary, A., A. Kumar, D. Becker and M. D. Sevilla (2006) The guanine cation radical: Investigation of deprotonation states by ESR and DFT. J. Phys. Chem. B 110, 2417124180.
  • 208
    de La Harpe, K., C. E. Crespo-Hernàndez and B. Kohler (2009) Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide. J. Am. Chem. Soc. 131, 1755717559.
  • 209
    Elias, B., C. Creely, G. W. Doorley, M. M. Feeney, C. Moucheron, A. Kirsch-DeMesmaeker, J. Dyer, D. C. Grills, M. W. George, P. Matousek, A. W. Parker, M. Towrie and J. M. Kelly (2008) Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy. Chem.-Eur. J. 14, 369375.
  • 210
    Costentin, C., V. Hajj, M. Robert, J.-M. Savéant and C. Tard (2011) Effect of base pairing on the electrochemical oxidation of guanine. J. Am. Chem. Soc. 132, 1014210147.
  • 211
    Cleveland, C. L., R. N. Barnett, A. Bongiorno, J. Joseph, C. Liu, G. B. Schuster and U. Landman (2007) Steric effects on water accessability control sequence-selectivity of radical cation reactions in DNA. J. Am. Chem. Soc. 129, 84088409.
  • 212
    Joseph, J. and G. B. Schuster (2010) One-electron oxidation of DNA: Reaction at thymine. Chem. Commun. 46, 78727878.