SEARCH

SEARCH BY CITATION

References

  • 1
    Crowley, D. J. and P. C. Hanawalt (1998) Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6-4 photoproducts, in UV-irradiated Escherichia coli. J. Bacteriol. 180, 33453352.
  • 2
    Cramers, P., P. Atanasova, H. Vrolijk, F. Darroudi, A. A. van Zeeland, R. Huiskamp, L. H. Mullenders and J. C. Kleinjans (2005) Pre-exposure to low doses: Modulation of X-ray-induced DNA damage and repair? Radiat. Res. 164, 383390.
  • 3
    Ikushima, T., H. Aritomi and J. Morisita (1996) Radioadaptive response: Efficient repair of radiation-induced DNA damage in adapted cells. Mutat. Res. 358, 193198.
  • 4
    Ye, N., M. S. Bianchi, N. O. Bianchi and G. P. Holmquist (1999) Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat. Res. 435, 4361.
  • 5
    Amundson, S. A., K. T. Do, S. Shahab, M. Bittner, P. Meltzer, J. Trent and A. J. Fornace Jr (2000) Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat. Res. 154, 342346.
  • 6
    Rieger, K. E. and G. Chu (2004) Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 32, 47864803.
  • 7
    Adimoolam, S. and J. M. Ford (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl Acad. Sci. USA 99, 1298512990.
  • 8
    Hwang, B. J., J. M. Ford, P. C. Hanawalt and G. Chu (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424428.
  • 9
    Kastan, M. B., Q. Zhan, W. S. El Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein and A. J. Fornace Jr. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587597.
  • 10
    Shan, B., J. Xu, Y. Zhuo, C. A. Morris and G. F. Morris (2003) Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation. J. Biol. Chem. 278, 4400944017.
  • 11
    van Zeeland, A. A., C. J. Bussmann, F. Degrassi, A. R. Filon, A. C. van Kesteren-van Leeuwen, F. Palitti and A. T. Natarajan (1982) Effects of aphidicolin on repair replication and induced chromosomal aberrations in mammalian cells. Mutat. Res. 92, 379392.
  • 12
    Banda, M., A. Bommineni, R. A. Thomas, L. S. Luckinbill and J. D. Tucker (2008) Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat. Res. 649, 126134.
  • 13
    Sugasawa, K., Y. Okuda, M. Saijo, R. Nishi, N. Matsuda, G. Chu, T. Mori, S. Iwai, K. Tanaka, K. Tanaka and F. Hanaoka (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387400.
  • 14
    van Dam, H., M. Duyndam, R. Rottier, A. Bosch, L. Vries-Smits, P. Herrlich, A. Zantema, P. Angel and A. J. van der Eb (1993) Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 12, 479487.
  • 15
    Volker, M., M. J. Mone, P. Karmakar, A. van Hoffen, W. Schul, W. Vermeulen, J. H. Hoeijmakers, R. van Driel, A. A. van Zeeland and L. H. Mullenders (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213224.
  • 16
    Dualan, R., T. Brody, S. Keeney, A. F. Nichols, A. Admon and S. Linn (1995) Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the p127 and p48 subunits of a human damage-specific DNA binding protein. Genomics 29, 6269.
  • 17
    Sugasawa, K., J. M. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. Eker, F. Hanaoka, D. Bootsma and J. H. Hoeijmakers (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223232.
  • 18
    Mohankumar, M. N., S. F. Paul, P. Venkatachalam and R. K. Jeevanram (1998) Influence of in vitro low-level gamma-radiation on the UV-induced DNA repair capacity of human lymphocytes – Analysed by unscheduled DNA synthesis (UDS) and comet assay. Radiat. Environ. Biophys. 37, 267275.
  • 19
    Wojcik, A. and H. Tuschl (1990) Indications of an adaptive response in C57BL mice pre-exposed in vivo to low doses of ionizing radiation. Mutat. Res. 243, 6773.
  • 20
    Wojcik, A., C. A. Seemayer, W. U. Muller and C. Streffer (1995) No indications of an enhanced UV-light-induced unscheduled DNA synthesis in splenocytes of mice following a low-dose irradiation in vivo or in vitro. Radiat. Environ. Biophys. 34, 121125.
  • 21
    Rigaud, O. and E. Moustacchi (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat. Res. 358, 127134.
  • 22
    Cramers, P., E. E. Verhoeven, A. R. Filon, D. A. Rockx, S. J. Santos, A. A. van der Leer, J. C. Kleinjans, A. A. van Zeeland and L. H. Mullenders (2011) Impaired repair of ionizing radiation-induced DNA damage in cockayne syndrome cells. Radiat. Res. 175, 432443.
  • 23
    Painter, R. B. and B. R. Young (1972) Repair replication in mammalian cells after x-irradiation. Mutat. Res. 14, 225235.
  • 24
    Leadon, S. A., A. B. Dunn and C. E. Ross (1996) A novel DNA repair response is induced in human cells exposed to ionizing radiation at the G1/S-phase border. Radiat. Res. 146, 123130.
  • 25
    Amundson, S. A., K. T. Do, L. Vinikoor, C. A. Koch-Paiz, M. L. Bittner, J. M. Trent, P. Meltzer and A. J. Fornace Jr. (2005) Stress-specific signatures: Expression profiling of p53 wild-type and -null human cells. Oncogene 24, 45724579.
  • 26
    D’Errico, M., E. Parlanti, M. Teson, B. M. de Jesus, P. Degan, A. Calcagnile, P. Jaruga, M. Bjoras, M. Crescenzi, A. M. Pedrini, J. M. Egly, G. Zambruno, M. Stefanini, M. Dizdaroglu and E. Dogliotti (2006) New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J. 25, 43054315.
  • 27
    Shimizu, Y., S. Iwai, F. Hanaoka and K. Sugasawa (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 22, 164173.
  • 28
    Fujiwara, Y., C. Masutani, T. Mizukoshi, J. Kondo, F. Hanaoka and S. Iwai (1999) Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J. Biol. Chem. 274, 2002720033.
  • 29
    Wittschieben, B. O., S. Iwai and R. D. Wood (2005) DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J. Biol. Chem. 280, 3998239989.
  • 30
    Fritz, L. K., C. Suquet and M. J. Smerdon (1996) Strand breaks are repaired efficiently in human ribosomal genes. J. Biol. Chem. 271, 1297212976.
  • 31
    Thorslund, T., M. Sunesen, V. A. Bohr and T. Stevnsner (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair (Amst) 1, 261273.
  • 32
    Rapic-Otrin, V., M. P. McLenigan, D. C. Bisi, M. Gonzalez and A. S. Levine (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 30, 25882598.
  • 33
    Moser, J., M. Volker, H. Kool, S. Alekseev, H. Vrieling, A. Yasui, A. A. van Zeeland and L. H. Mullenders (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst) 4, 571582.
  • 34
    Kapetanaki, M. G., J. Guerrero-Santoro, D. C. Bisi, C. L. Hsieh, V. Rapic-Otrin and A. S. Levine (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl Acad. Sci. USA 103, 25882593.
  • 35
    Wang, H., L. Zhai, J. Xu, H. Y. Joo, S. Jackson, H. Erdjument-Bromage, P. Tempst, Y. Xiong and Y. Zhang (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383394.
  • 36
    Nakanishi, S., R. Prasad, S. H. Wilson and M. Smerdon (2007) Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res. 35, 43134321.
  • 37
    Mitchell, D. L., T. D. Nguyen and J. E. Cleaver (1990) Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin. J. Biol. Chem. 265, 53535356.
  • 38
    Pfeifer, G. P., R. Drouin and G. P. Holmquist (1993) Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288, 3946.
  • 39
    Tan, T. and G. Chu (2002) p53 binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol. Cell. Biol. 22, 32473254.
  • 40
    Kuo, W. H., Y. Wang, R. P. Wong, E. I. Campos and G. Li (2007) The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp. Cell Res. 313, 16281638.
  • 41
    Rubbi, C. P. and J. Milner (2003) p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 22, 975986.