SEARCH

SEARCH BY CITATION

References

  • 1
    Agostinis, P., K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab (2011) Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 61(4), 250281.
  • 2
    Konan, Y. N., R. Gurny and E. Allemann (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B 66, 89106.
  • 3
    Chaterjee, D. K., L. S. Fong and Y. Zhang (2008) Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 60, 16271637.
  • 4
    Kumari, A., S. K. Yadav and S. C. Yadav (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75, 118.
  • 5
    Jain, R., N. H. Shah, A. W. Malick and C. T. Rhodes (1998) Controlled drug delivery by biodegradable poly(ester) devices: Different preparative approaches. Drug Dev. Ind. Pharm. 24, 703727.
  • 6
    Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-coglycolide) (PLGA) devices. Biomaterials 21, 24752490.
  • 7
    Alshamsan, A., A. Haddadi, S. Hamdy, J. Samuel, A. El-Kadi, H. Uludag and A. Lavasanifar (2010) STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm. 7, 16431654.
  • 8
    Hamdy, S., A. Haddadi, A. Shayeganpour, J. Samuel and A. Lavasanifar (2011) Activation of antigen specific T cell responses by mannan-decorated PLGA nanoparticles. Pharm. Res. 28(9), 22882301.
  • 9
    Haddadi, A., P. Elamanchili, A. Lavasanifar, S. Das, J. Shapiro and J. Samuel (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J. Biomed. Mater. Res. 84A, 885898.
  • 10
    Hamdy, S., A. Haddadi, V. Somayaji, D. Ruan and J. Samuel (2007) The pharmaceutical analysis of synthetic lipid A-based vaccine adjutants in poly (d,l-lactic-co-glycolic acid) nanoparticle formulations. J. Pharm. Biomed. Anal. 44, 914923.
  • 11
    Mundargi, R. C., V. R. Babu, V. Rangaswamy, P. Patel and T. M. Aminabhavi (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l,-lactide-co-glycolide) and its derivatives. J. Control. Release 125, 193209.
  • 12
    Fadel, M., K. Kassab and D. A. Fadeel (2010) Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Lasers Med. Sci. 25, 283292.
  • 13
    Ricci-Júnior, E. and J. M. Marchetti (2006) Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J. Microencapsul. 23, 523538.
  • 14
    Ricci-Júnior, E. and J. M. Marchetti (2006) Zinc (II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int. J. Pharm. 310, 187195.
  • 15
    Pagonis, T. C., J. Chen, C. R. Fontana, H. Devalapally, K. Ruggiero, X. Song, F. Foschi, J. Dunham, Z. Skobe, H. Yamazaki, R. Kent, A. C. Tanner, M. M. Amiji and N. S. Soukos (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endod. 36, 322328.
  • 16
    Hu, Z., Y. Pan, J. Wang, J. Chen, J. Li and L. Ren (2009) Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Biomed. Pharmacother. 63, 155164.
  • 17
    Gomes, A. J., C. N. Lunardi and A. C. Tedesco (2007) Characterization of biodegradable poly(d,l-lactide-co-glycolide) nanoparticles loaded with bacteriochlorophyll-a for photodynamic therapy. Photomed. Laser Surg. 25, 428435.
  • 18
    Saxena, V., M. Sadoqi and J. Shao (2006) Polymeric nanoparticulate delivery system for indocyanine green: Biodistribution in healthy mice. Int. J. Pharm. 308, 200204.
  • 19
    Vargas, A., B. Pegaz, E. Debefve, Y. Konan-Knuakou, N. Lange, J. P. Ballini, H. van den Bergh, R. Gurny and F. Delie (2004) Improved photodynamic activity of porphyrin loaded into nanoparticles: An in vivo evaluation using chick embryos. Int. J. Pharm. 286, 131145.
  • 20
    Konan, Y. N., M. Berton, R. Gurny and E. Allémann (2003) Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 18, 241249.
  • 21
    Konan, Y. N., R. Cherny, J. Favet, M. Berton, R. Gurny and E. Allémann (2003) Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm. 55, 115124.
  • 22
    Korbelik, M., S. Merchant and N. Huang (2009) Exploitation of immune response-eliciting properties of hypocrellin photosensitizer SL052-based photodynamic therapy for eradication of malignant tumors. Photochem. Photobiol. 85, 14181424.
  • 23
    Xiao, Z., R. J. Owen, L. Weiyang, J. Tulip, K. Brown, T. Woo and R. B. Moore (2010) Lipophilic photosensitizer administration via the prostate arteries for photodynamic therapy of the canine prostate. Photodiagnosis Photodyn. Ther. 7, 106114.
  • 24
    Meng, Y., C. Zou, R. Madiyalakan, T. Woo, M. Huang, X. Yang, E. Swanson, J. Chen and J. Z. Xing (2010) Water-soluble and biocompatible sono/photosensitizer nanoparticles for enhanced cancer therapy. Nanomedicine 5, 15591569.
  • 25
    Khurana, D., E. A. Martin, J. L. Kasperbauer, B. W. O’Malley Jr., D. R. Salomao, L. Chen and S. E. Strome (2001) Characterization of spontaneously arising murine squamous cell carcinoma (SCC VII) as a prerequisite for head and neck cancer immunotherapy. Head Neck 23, 899906.
  • 26
    Ferrari, M. (2005) Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161171.
  • 27
    Alexis, F., E. Pridgen, L. K. Molnar and O. C. Farokhzad (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 118.
  • 28
    Wohlfart, S., A. S. Khalansky, S. Gelperina, O. Maksimenko, C. Bernreuther, M. Glatzel and J. Kreuter (2011) Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS ONE 6(1), e19121.
  • 29
    Heath, F., P. Haria and C. Alexander (2007) Varying polymer architecture to deliver drugs. AAPS J. 9(2), E235E240.
  • 30
    Sunshine, J. S., M. I. Akanda, D. Li, K. L. Kozielski and J. J. Green (2011) Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules 12(10), 35923600.
  • 31
    Aliabadi, H. M., B. Landry, R. K. Bahadur, A. Neamnark, O. Suwantong and H. Uludağ (2011) Impact of lipid substitution on assembly and delivery of siRNA by cationic polymers. Macromol. Biosci. 11(5), 662672.
  • 32
    Acharya, S. and S. K. Sahoo (2011) PLGA nanoparticles containing various anticancer agents and tumor delivery by EPR effect. Adv. Drug Deliv. Rev. 63, 170183.
  • 33
    Greish, K. (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 2537.