• 1
    Boulton, M., M. Rozanowska and B. Rozanowski (2001) Retinal photodamage. J. Photochem. Photobiol., B 64, 144161.
  • 2
    Noell, W. K., V. S. Walker, B. S. Kang and S. Berman (1966) Retinal damage by light in rats. Invest. Ophthalmol. 5, 450473.
  • 3
    Wenzel, A., C. Grimm, M. Samardzija and C. E. Reme (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin. Eye Res. 24, 275306.
  • 4
    Organisciak, D. T. and D. K. Vaughan (2010) Retinal light damage: Mechanisms and protection. Prog. Retin. Eye Res. 29, 113134.
  • 5
    Cruickshanks, K. J., L. L. Ritter, R. Klein and S. E. Moss (1993) The association of microalbuminuria with diabetic retinopathy. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 100, 862867.
  • 6
    Simons, K. (1993) Artificial light and early-life exposure in age-related macular degeneration and in cataractogenic phototoxicity. Arch. Ophthalmol. 111, 297298.
  • 7
    Cideciyan, V., D. C. Hood, Y. Huang, E. Banin, Z. Y. Li, E. M. Stone, H. Milam and S. G. Jacobson (1998) Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc. Natl Acad. Sci. U.S.A. 95, 71037108.
  • 8
    Krinsky, N. I., J. T. Landrum and R. A. Bone (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23, 171201.
  • 9
    Putting, B. J., R. C. Zweypfenning, G. F. Vrensen, J. A. Oosterhuis and J. A. van Best (1992) Blood-retinal barrier dysfunction at the pigment epithelium induced by blue light. Invest. Ophthalmol. Vis. Sci. 33, 33853393.
  • 10
    Maeno, E., Y. Ishizaki, T. Kanaseki, A. Hazama and Y. Okada (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl Acad. Sci. U.S.A. 97, 94879492.
  • 11
    Iandiev, I., A. Wurm, M. Hollborn, P. Wiedemann, C. Grimm, C. E. Remé, A. Reichenbach, T. Pannicke and A. Bringmann (2008) Müller cell response to blue light injury of the rat retina. Invest. Ophthalmol. Vis. Sci. 49, 35593567.
  • 12
    Marco-Gomariz, M. A., N. Hurtado-Montalban, M. Vidal-Sanz, R. D. Lund and M. P. Villegas-Perez (2006) Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats. J. Comp. Neurol. 498, 163179.
  • 13
    Garcia-Ayuso, D., M. Salinas-Navarro, M. Agudo-Barriuso, L. Alarcon-Martinez, M. Vidal-Sanz and M. P. Villegas-Perez (2011) Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol. Vis. 17, 17161733.
  • 14
    Osborne, N. N. (2010) Mitochondria: Their role in ganglion cell death and survival in primary open angle glaucoma. Exp. Eye Res. 90, 750757.
  • 15
    Osborne, N. N., T. A. Kamalden, S. Majid, S. Del Olmo-Aguado, G. Manso and D. Ji (2010) Light effects on mitochondrial photosensitizers in relation to retinal degeneration. Neurochem. Res. 35, 20272034.
  • 16
    Wang, L., J. Dong, G. Cull, B. Fortune and G. A. Cioffi (2003) Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 44, 29.
  • 17
    Carelli, V., F. N. Ross-Cisneros and A. Sadun (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 23, 5389.
  • 18
    Osborne, N. N., G. Lascaratos, J. Bron, G. Chidlow and J. P. Wood (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br. J. Ophthalmol. 90, 237241.
  • 19
    Bell, J. E. and C. Hall (1981) Hemoproteins. In Spectroscopy in Biochemistry (Edited by J. E. Bell), pp. 4246. CRC Press, Inc., Boca Raton, FL.
  • 20
    Karu, T. I., L. V. Pyatibrat and G. S. Kalendo (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem. Photobiol. Sci. 3, 211216.
  • 21
    Ortiz de Montellano, P. R. (1995) The 1994 Bernard B. Brodie Award Lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug Metab. Dispos. 23, 11811187.
  • 22
    Munoz, M. A., A. Pacheco, M. I. Becker, E. Silva, R. Ebensperger, M. Garcia, E. De Ioannes and M. Edwards (2011) Different cell death mechanisms are induced by a hydrophobic flavin in human tumor cells after visible light irradiation. J. Photochem. Photobiol., B 103, 5767.
  • 23
    Hockberger, P. E., T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy and J. G. White (1999) Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl Acad. Sci. U.S.A. 96, 62556260.
  • 24
    García, J. and E. Silva (1997) Flavin-sensitized photooxidation of amino acids present in a parenteral nutrition infusate: Protection by ascorbic acid. J. Nutr. Biochem. 8, 341345.
  • 25
    Grimm, C., A. Wenzel, T. Williams, P. Rol, F. Hafezi and C. Reme (2001) Rhodopsin-mediated blue-light damage to the rat retina: Effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci. 42, 497505.
  • 26
    Wu, J., S. Seregard and P. V. Algvere (2006) Photochemical damage of the retina. Surv. Ophthalmol. 51, 461481.
  • 27
    Van Bergen, N. J., J. P. Wood, G. Chidlow, A. Trounce, R. J. Casson, W. K. Ju, R. N. Weinreb and J. G. Crowston (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Invest. Ophthalmol. Vis. Sci. 50, 42674272.
  • 28
    Agarwal, N., R. Agarwal, D. M. Kumar, A. Ondricek, F. Clark, R. J. Wordinger and H. Pang (2007) Comparison of expression profile of neurotrophins and their receptors in primary and transformed rat retinal ganglion cells. Mol. Vis. 13, 13111318.
  • 29
    Osborne, N. N., G.-Y. Li, D. Ji, H. J. Mortiboys and S. Jackson (2008) Light affects mitochondria to cause apoptosis to cultured cells: Possible relevance to ganglion cell death in certain optic neuropathies. J. Neurochem. 105, 20132028.
  • 30
    Ji, D., T. A. Kamalden, S. del Olmo-Aguado and N. N. Osborne (2011) Light- and sodium azide-induced death of RGC-5 cells in culture occurs via different mechanisms. Apoptosis 16, 425437.
  • 31
    Eells, J. T., M. T. Wong-Riley, J. VerHoeve, M. Henry, E. V. Buchman, M. P. Kane, L. J. Gould, R. Das, M. Jett, B. D. Hodgson, D. Margolis and H. T. Whelan (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4, 559567.
  • 32
    Karu, T. I., L. V. Pyatibrat, S. F. Kolyakov and N. I. Afanasyeva (2005) Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. J. Photochem. Photobiol., B 81, 98106.
  • 33
    Karu, T. I. (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 84, 10911099.
  • 34
    Lane, N. (2006) Cell biology: Power games. Nature 443, 901903.
  • 35
    Yoshii, T., M. Ahmad and C. Helfrich-Forster (2009) Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086.
  • 36
    Losi, A. and W. Gärtner (2011) Old chromophores, new photoactivation paradigms, trendy applications: Flavins in blue light-sensing photoreceptors. Photochem. Photobiol. 87, 491510.
  • 37
    Stoien, J. D., R. J. Wang and F. Landa (1974) Effect of near-ultraviolet and visible light on mammalian cells in culture II. Formation of toxic photoproducts in tissue culture medium by blacklight. Proc. Natl Acad. Sci. U.S.A. 71, 39613965.
  • 38
    Edwards, M., E. Silva, B. Jofre, M. I. Becker and E. De Ioannes (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. J. Photochem. Photobiol., B 24, 179186.
  • 39
    Mate, M. J., M. Ortiz-Lombardia, B. Boitel, A. Haouz, D. Tello, S. A. Susin, J. Penninger, G. Kroemer and P. M. Alzari (2002) The crystal structure of the mouse apoptosis-inducing factor AIF. Nat. Struct. Biol. 9, 442446.
  • 40
    Ye, H., C. Cande, N. C. Stephanou, S. Jiang, S. Gurbuxani, N. Larochette, E. Daugas, C. Garrido, G. Kroemer and H. Wu (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat. Struct. Biol. 9, 680684.
  • 41
    Lorenzo, H. K. and S. A. Susin (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett. 557, 1420.
  • 42
    Miramar, M. D., P. Costantini, L. Ravagnan, L. M. Saraiva, D. Haouzi, G. Brothers, J. M. Penninger, M. L. Peleato, G. Kroemer and S. A. Susin (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J. Biol. Chem. 276, 1639116398.
  • 43
    Delavallee, L., L. Cabon, P. Galan-Malo, H. K. Lorenzo and S. A. Susin (2011) AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics. IUBMB Life 63, 221232.
  • 44
    Losi, A. and W. Gärtner (2012) The evolution of flavin-binding photoreceptors; an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. (in press).
  • 45
    Yu, S. W., S. A. Andrabi, H. Wang, N. S. Kim, G. G. Poirier, T. M. Dawson and V. L. Dawson (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl Acad. Sci. U.S.A. 103, 1831418319.
  • 46
    DiMauro, S. and E. A. Schon (2003) Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348, 26562668.
  • 47
    Yu-Wai-Man, P., P. G. Griffiths and P. F. Chinnery (2011) Mitochondrial optic neuropathies—Disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 30, 81114.
  • 48
    Wei, Y. H., C. Y. Lu, H. C. Lee, C. Y. Pang and Y. S. Ma (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann. N.Y. Acad. Sci. 854, 155170.
  • 49
    Davey, G. P. and J. B. Clark (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J. Neurochem. 66, 16171624.
  • 50
    Sang, A., Y. Cheng, H. Lu, D. Chen, R. Gao and A. Shen (2011) Light-induced retinal ganglion cell damage in vivo involves Dexras1. Mol. Vis. 17, 134143.
  • 51
    Fang, M., S. R. Jaffrey, A. Sawa, K. Ye, X. Luo and S. H. Snyder (2000) Dexras1: A G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28, 183193.
  • 52
    Li, X., C. Cheng, M. Fei, S. Gao, S. Niu, M. Chen, Y. Liu, Z. Guo, H. Wang, J. Zhao, X. Yu and A. Shen (2008) Spatiotemporal expression of Dexras1 after spinal cord transection in rats. Cell. Mol. Neurobiol. 28, 371388.
  • 53
    Shen, A., M. Chen, S. Niu, L. Sun, S. Gao, S. Shi, X. Li, Q. Lv, Z. Guo and C. Cheng (2008) Changes in mRNA for CAPON and Dexras1 in adult rat following sciatic nerve transection. J. Chem. Neuroanat. 35, 8593.
  • 54
    Van Gelder, R. N. (2004) Resetting the clock: Dexras1 defines a path. Neuron 43, 603604.
  • 55
    Cheng, H. Y., K. Obrietan, S. W. Cain, B. Y. Lee, P. V. Agostino, N. A. Joza, M. E. Harrington, M. R. Ralph and J. M. Penninger (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43, 715728.
  • 56
    Osborne, N. N.. (2008) Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: Focus on ganglion cell axonal mitochondria. In Progress in Brain Research, Vol. 173, 339352.
  • 57
    La Morgia, C., F. N. Ross-Cisneros, J. Hannibal, P. Montagna, A. Sadun and V. Carelli (2011) Melanopsin-expressing retinal ganglion cells: Implications for human diseases. Vision. Res. 51, 296302.