• 1
    Oesterhelt, D. and W. Stoeckenius (1974) Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane. Methods Enzymol. 31, 667678.
  • 2
    Kollbach, G., S. Steinmuller, T. Berndsen, V. Buss and W. Gartner (1998) The chromophore induces a correct folding of the polypeptide chain of Bacteriorhodopsin. Biochemistry 37, 6822768232.
  • 3
    Pieper, J., A. Buchsteiner, N. A. Dencher, R. E. Lechner and T. Hauß (2009) Light-induced modulation of protein dynamics during the photocycle of Bacteriorhodopsin. Photochem. Photobiol. 85, 590597.
  • 4
    Lanyi, J. K. (2004) Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665688.
  • 5
    Seigneuret, M. and J. N. Rigaud (1988) Partial separation of inwardly pumping and outwardly pumping bacteriorhodopsin reconstituted liposomes by gel filtration. FEBS Lett. 228, 7984.
  • 6
    Brzezinski, P. (2000) Proton-transfer reactions in bioenergetics. Biochim. Biophys. Acta 1458, 15.
  • 7
    Xie, A. H., A. F. G. van der Meer and R. H. Austin (2002) Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 88, 018102-1018102-4.
  • 8
    Balashov, S. P. (2000) Protonation reactions and their coupling in bacteriorhodopsin. Biochim. Biophys. Acta 1460, 7594.
  • 9
    Danshina, S. V., L. A. Drachev, A. D. Kaulen and V. P. Skulachev (1992) The inward H+ pathway in Bacteriorhodopsin—the role of M412 and P(N)560 intermediates. Photochem. Photobiol. 55, 735740.
  • 10
    Toth-Boconadi, R., A. Der, L. Fabian, S. G. Taneva and L. Keszthelyi (2009) Excitation of the M intermediates of Bacteriorhodopsin. Photochem. Photobiol. 85, 609613.
  • 11
    Birge, R. R., N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J. Phys. Chem. B 103, 1074610766.
  • 12
    Hampp, N. (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 100, 17551776.
  • 13
    Ma, D. W., Y. C. Zhao, J. Wu, T. Cui and J. D. Ding (2009) A block-copolymer hydrogel encapsulates bacteriorhodopsin and produces the longest photochromic response of the membrane protein under high water content conditions. Soft Matter 5, 46354637.
  • 14
    Wang, Y. Z., J. Wu, D. W. Ma and J. D. Ding (2011) Preparation of a cross-linked gelatin/bacteriorhodopsin film and its photochromic properties. Sci. China Chem. 54, 405409.
  • 15
    Balashov, S. P., E. S. Imasheva, T. G. Ebrey, N. Chen, D. R. Menick and R. K. Crouch (1997) Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry 36, 86718676.
  • 16
    Brown, L. S., S. Sasaki, H. Kandori, A. Maeda, R. Needleman and J. K. Lanyi (1995) Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J. Biol. Chem. 270, 2712227126.
  • 17
    Balashov, S. P., M. Lu, E. S. Imasheva, R. Govindjee, T. G. Ebrey, B. Othersen, Y. Chen, R. K. Crouch and D. R. Menick (1999) The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Biochemistry 38, 20262039.
  • 18
    Luecke, H. (2000) Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim. Biophys. Acta 1460, 133156.
  • 19
    Mukohata, Y., Y. Sugiyama, K. Ihara and M. Yoshida (1988) An Australian halobacterium contains a novel proton pump retinal protein: archaerhodopsin. Biochem. Biophys. Res. Commun. 151, 13391345.
  • 20
    Ming, M., M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding (2006) pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin. Biophys. J. 90, 33223332.
  • 21
    Ming, M., Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding (2006) Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4. FEBS Lett. 580, 67496753.
  • 22
    Becher, B. M. and S. Y. Cassim (1975) Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep. Biochem. 5, 161178.
  • 23
    Ni, B., M. Chang, A. Duschl, J. K. Lanyi and R. Needleman (1990) An efficient system for the synthesis of bacteriorhodopsin in Halobacterium-halobium. Gene 90, 169172.
  • 24
    Zhao, Y. C., Y. Z. Wang, D. W. Ma, J. Wu, W. D. Huang and J. D. Ding (2011) Effects of mutation of Lys41 and Asp102 of Bacteriorhodopsin. Biosci. Biotechnol. Biochem. 75, 13641370.
  • 25
    Yohannan, S., D. Yang, S. Faham, G. Boulting, J. Whitelegge and J. U. Bowie (2004) Proline substitutions are not easily accommodated in a membrane protein. J. Mol. Biol. 341, 16.
  • 26
    Robertson, B. and E. P. Lukashev (1995) Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Biophys. J. 68, 15071517.
  • 27
    Wu, J., D. W. Ma, Y. Z. Wang, M. Ming, S. P. Balashov and J. D. Ding (2009) Efficient approach to determine the pKa of the proton release complex in the photocycle of retinal proteins. J. Phys. Chem. B 113, 44824491.
  • 28
    Mowery, P. C., R. H. Lozier, Q. Chae, Y. Tseng, M. Taylor and W. Stoeckenius (1979) Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry 18, 41004107.
  • 29
    Balashov, S. P., R. Govindjee, E. S. Imasheva, S. Misra, T. G. Ebrey, Y. Feng, R. K. Crouch and D. R. Menick (1995) The two pKa’s of aspartate-85 and control of thermal isomerization and proton release in the arginine82 to lysine mutant of bacteriorhodopsin. Biochemistry 34, 88208834.
  • 30
    Balashov, S. P., R. Govindjee and T. G. Ebrey (1991) Red shift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH. Biophys. J. 60, 475490.
  • 31
    Govindjee, R., E. S. Imasheva, S. Misra, S. P. Balashov, T. G. Ebrey, N. Chen, D. R. Menick and R. K. Crouch (1997) The mutation K129H reverses the order of proton release and uptake in bacteriorhodopsin; guanidinium restores it. Biophys. J. 72, 886898.
  • 32
    Balashov, S. P., E. S. Imasheva, R. Govindjee and T. G. Ebrey (1996) Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys. J. 70, 473481.
  • 33
    Peralvarez-Marin, A., V. A. Lorenz-Fonfria, R. Simon-Vazquez, M. Gomariz, I. Meseguer, E. Querol and E. Padros (2008) Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys. J. 95, 43844395.
  • 34
    Morgan, J. E., R. B. Gennis and A. Maeda (2008) A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin. Photochem. Photobiol. 84, 10381045.
  • 35
    Brown, L. S. (2001) Proton transport mechanism of bacteriorhodopsin as revealed by site-specific mutagenesis and protein sequence variability. Biochemistry (Moscow) 66, 15461554.
  • 36
    Lu, M., S. P. Balashov, T. G. Ebrey, N. Chen, Y. M. Chen, D. R. Menick and R. K. Crouch (2000) Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant. Biochemistry 39, 23252331.
  • 37
    Dioumaev, A. K., H. T. Richter, L. S. Brown, M. Tanio, S. Tuzi, H. Saito, Y. Kimura, R. Needleman and J. K. Lanyi (1998) Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry 37, 24962506.
  • 38
    Imasheva, E. S., M. Lu, S. P. Balashov, T. G. Ebrey, Y. M. Chen, Z. Ablonczy, D. R. Menick and R. K. Crouch (2001) Exploring the function of Tyr83 in bacteriorhodopsin: features of the Y83F and Y83N mutants. Biochemistry 40, 1332013330.
  • 39
    Lazarova, T., E. Querol and E. Padros (2009) Coupling between the retinal thermal isomerization and the Glu194 residue of bacteriorhodopsin. Photochem. Photobiol. 85, 617623.
  • 40
    Kandt, C., J. Schlitter and K. Gerwert (2004) Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys. J. 86, 705717.
  • 41
    Garczarek, F., L. S. Brown, J. K. Lanyi and K. Gerwert (2005) Proton binding within a membrane protein by a protonated water cluster. Proc. Natl Acad. Sci. USA 102, 36333638.
  • 42
    Lu, M., R. Govindjee, S. P. Balashov, T. G. Ebrey, Y. Chen, D. R. Menick and R. K. Crouch (2000) Ser193 and Thr205 are important components of the proton release pathway in bacteriorhodopsin. Biophys. J. 78, 476a.
  • 43
    Chaumont, A., M. Baer, G. Mathias and D. Marx (2008) Potential proton-release channels in bacteriorhodopsin. ChemPhysChem 9, 27512758.
  • 44
    Belrhali, H., P. Nollert, A. Royant, C. Menzel, J. P. Rosenbusch, E. M Landau and E. Pebay-Peyroula (1999) Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7, 909917.
  • 45
    Humphrey, W., A. Dalke and K. Schulten (1996) VMD—visual molecular dynamics. J. Mol. Graph. 14, 3338.