SEARCH

SEARCH BY CITATION

Abstract

Tumor recurrence due to incomplete eradication of tumor cells is a major problem facing current cancer therapies. To overcome this problem, it is necessary to enhance cell killing and/or prevent cell regrowth after treatment. Because phosphatidylinositol 3-kinases (PI3K) pathway plays an important role in stimulating cell survival and growth, we studied the feasibility of using a PI3K pathway inhibitor NVP-BEZ235 (BEZ235) to enhance the effectiveness of vascular-targeted photodynamic therapy (vPDT) with verteporfin. We found that BEZ235 or PDT alone significantly inhibited cell growth in both SVEC endothelial and PC-3 prostate cancer cells, although SVEC cells appeared to be more responsive than PC-3 cells. Autophagy was detected after both BEZ235 and verteporfin-PDT in both cell lines. Autophagy appeared to protect cells from PDT-induced cell death because inhibition of autophagy increased cell death. Autophagic flux assay revealed that PDT actually decreased autophagic flux especially at a high dose of verteporfin. Combination of BEZ235 and PDT caused greater inhibition of PI3K signaling pathway, leading to enhanced cell growth inhibition in both cell lines. SVEC cells exhibited a higher sensitivity towards such a combination than PC-3 cells. Our data indicated that BEZ235 in combination with PDT provides a promising approach of enhancing therapeutic response.