• 1
    Commission Internationale de L’Eclairage (CIE) (1987) International lighting vocabulary. InCIE Publication No. 17.4 (Edited by Bureau Central de la Commision Electrotechnique Internationale), pp. 1379, Geneva.
  • 2
    Roberts, J. E. (2001) Ocular phototoxicity. J. Photochem. Photobiol. B 64(2-3), 136143.
  • 3
    Sliney, D. (2005) Exposure geometry and spectral environment determine photobiological effects on the human eye. Photochem. Photobiol. 81, 483489.
  • 4
    Coroneo, M. T. (1990) Albedo concentration in the anterior eye: a phenomenon that locates some solar diseases. Ophthalmic Surg. 21(1), 6066.
  • 5
    Norval, M., A. P. Cullen, F. R. de Gruijl, J. Longstreth, Y. Takizawa, R. M. Lucas, F. P. Noonan and J. C. van der Leun (2007) The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem. Photobiol. Sci. 6(3), 232251.
  • 6
    Klein, R. S., V. P. Werth, J. C. Dowdy and R. M. Sayre (2009) Analysis of compact fluorescent lights for use by patients with photosensitive conditions. Photochem. Photobiol. 85(4), 10041010.
  • 7
    Samiec, P. S., C. Drews-Botsch, E. W. Flagg, J. C. Kurtz, P. Sternberg Jr, R. L. Reed and D. P. Jones (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic. Biol. Med. 24(5), 699704.
  • 8
    Vandewoude, M. F. and M. G. Vandewoude (1987) Vitamin E status in a normal population: the influence of age. J. Am. Coll. Nutr. 6(4), 307311.
  • 9
    Bachem, A. (1956) Ophthalmic ultraviolet action spectra. Am. J. Ophthalmol. 41, 969975.
  • 10
    Cullen, A. P. (2002) Photokeratitis and other phototoxic effects on the cornea and conjunctiva. Int. J. Toxicol. 21(6), 455464.
  • 11
    Barker, F. M., G. C. Brainard and P. Dayhaw-Barker (1991) Transmission of the human lens as a function of age. Invest. Ophthalmol. Vis. Sci. 32S, 1083.
  • 12
    Kuszak, J. R., K. L. Peterson, J. G. Sivak and K. L. Herbert (1994) The interrelationship of lens anatomy and optical quality. II. Primate lenses. Exp. Eye Res. 59(5), 521535.
  • 13
    Dillon, J. and S. J. Atherton (1990) Time resolved spectroscopic studies on the intact human lens. Photochem. Photobiol. 51(4), 465468.
  • 14
    Khachik, F., P. S. Bernstein and D. L. Garland (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest. Ophthalmol. Vis. Sci. 38, 18021811.
  • 15
    Aonuma, H., K. Koide, K. Masuda and I. Watanabe (1997) Retinal light damage: protective effect of alpha-tocopherol. Jpn. J. Ophthalmol. 41, 160167.
  • 16
    Guajardo, M., A. Terrasa and A. Catala (1999) The effect of alpha tocopherol, all-trans retinol and retinyl palmitate on the non enzymatic lipid peroxidation of rod outer segments. Mol. Cell. Biochem. 197(1-2), 173178.
  • 17
    Tate, D. J. and D. A. Newsome (2006) A novel zinc compound (zinc monocysteine) enhances the antioxidant capacity of human retinal pigment epithelial cells. Curr. Eye Res. 31(7-8), 675683.
  • 18
    Bernstein, P. S., D. Y. Zhao, S. W. Wintch, I. V. Ermakov, R. W. McClane and W. Gellermann (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109(10), 17801787.
  • 19
    (2009) Macular pigment and healthy vision. Optometry 80(10), 592598.
  • 20
    Suter, M., C. Reme, C. Grimm, A. Wenzel, M. Jaattela, P. Esser, N. Kociok, M. Leist and C. Richter (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J. Biol. Chem. 275(50), 3962539630.
  • 21
    Hu, D. N., J. D. Simon and T. Sarna (2008) Role of ocular melanin in ophthalmic physiology and pathology. Photochem. Photobiol. 84(3), 639644.
  • 22
    Roberts, J. E., E. L. Finley, S. A. Patat and K. L. Schey (2001) Photooxidation of lens proteins with xanthurenic acid: a putative chromophore for cataractogenesis. Photochem. Photobiol. 74, 740744.
  • 23
    Thiagarajan, G., E. Shirao, K. Ando, A. Inoue and D. Balasubramanian (2002) Role of xanthurenic acid 8-O-beta-d-glucoside, a novel fluorophore that accumulates in the brunescent human eye lens. Photochem. Photobiol. 76(3), 368372.
  • 24
    Roberts, J. E. (2002) Screening for ocular phototoxicity. Int. J. Toxicol. 21, 491500.
  • 25
    Strauss, O. (2005) The retinal pigment epithelium in visual function. Physiol. Rev. 85, 845881.
  • 26
    Ripps, H. (2010) Light to sight: milestones in phototransduction. FASEB J. 24(4), 970975.
  • 27
    LaVail, M. M. (1973) Kinetics of rod outer segment renewal in the developing mouse retina. J. Cell Biol. 58, 650661.
  • 28
    Feeney, L. (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest. Ophthalmol. Vis. Sci. 17(7), 583600.
  • 29
    Horton, J. D., N. A. Shah, J. A. Warrington, N. N. Anderson, S. W. Park, M. S. Brown and J. L. Goldstein (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U.S.A. 100, 1202712032.
  • 30
    Ishibashi, K., J. Tian and J. T. Handa (2004) Similarity of mRNA phenotypes of morphologically normal macular and peripheral retinal pigment epithelial cells in older human eyes. Invest. Ophthalmol. Vis. Sci. 45, 32913301.
  • 31
    Dillon, J. (1991) The photophysics and photobiology of the eye. J. Photochem. Photobiol. B 10, 2340.
  • 32
    Noell, W. K. (1980) Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision. Res. 20(12), 11631171.
  • 33
    Wielgus, A. R., R. J. Collier, E. Martin, F. B. Lih, K. B. Tomer, C. F. Chignell and J. E. Roberts (2010) Blue light induced A2E oxidation in rat eyes—experimental animal model of dry AMD. Photochem. Photobiol. Sci. 9(11), 15051512.
  • 34
    Taylor, H. R., S. West, B. Munoz, F. S. Rosenthal, S. B. Bressler and N. M. Bressler (1992) The long-term effects of visible light on the eye. Arch. Ophthalmol. 110(1), 99104.
  • 35
    Boulton, M. and P. Dayhaw-Barker (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond.) 15, 384389.
  • 36
    Glickman, R. D. (2002) Phototoxicity to the retina: mechanisms of damage. Int. J. Toxicol. 21(6), 473490.
  • 37
    Ham Jr, W. T., J. J. Ruffolo Jr, H. A. Mueller, A. M. Clarke and M. E. Moon (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest. Ophthalmol. Vis. Sci. 17(10), 10291035.
  • 38
    Marc, R. E., B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan and D. T. Organisciak (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol. Vis. 14, 782806.
  • 39
    Margrain, T. H., M. Boulton, J. Marshall and D. H. Sliney (2004) Do blue light filters confer protection against age-related macular degeneration? Prog. Retin. Eye Res. 23(5), 523531.
  • 40
    Ueda, T., T. Nakanishi-Ueda, H. Yasuhara, R. Koide and W. W. Dawson (2009) Eye damage control by reduced blue illumination. Exp. Eye Res. 89(6), 863868.
  • 41
    Agarwal, N., E. Martin, R. R. Krishnamoorthy, R. Landers, R. Wen, S. Krueger, M. A. Kapin and R. J. Collier (2002) Levobetaxolol-induced up-regulation of retinal bFGF and CNTF mRNAs and preservation of retinal function against a photic-induced retinopathy. Exp. Eye Res. 74(4), 445453.
  • 42
    Ham, W. T. Jr, H. A. Mueller, J. J. Ruffolo Jr, J. E. Millen, S. F. Cleary, R. K. Guerry and D. Guerry 3rd (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr. Eye Res. 3(1), 165174.
  • 43
    Ruffolo Jr, J. J., W. T. Ham Jr, H. A. Mueller and J. E. Millen (1984) Photochemical lesions in the primate retina under conditions of elevated blood oxygen. Invest. Ophthalmol. Vis. Sci. 25(8), 893898.
  • 44
    Organisciak, D. T. and B. S. Winkler (1994) Retinal light damage: practical and theoretical considerations. Prog. Retin. Eye Res. 13(1), 129.
  • 45
    Organisciak, D. T. and D. K. Vaughan (2010) Retinal light damage: mechanisms and protection. Prog. Retin. Eye Res. 29(2), 113134.
  • 46
    Grimm, C., C. E. Reme, P. O. Rol and T. P. Williams (2000) Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes. Invest. Ophthalmol. Vis. Sci. 41(12), 39843990.
  • 47
    Grimm, C., A. Wenzel, T. Williams, P. Rol, F. Hafezi and C. Reme (2001) Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci. 42(2), 497505.
  • 48
    Boulton, M., M. Rozanowska and B. Rozanowski (2001) Retinal photodamage. J. Photochem. Photobiol. B 64(2-3), 144161.
  • 49
    Sparrow, J. R., Y. Wu, C. Y. Kim and J. Zhou (2010) Phospholipid meets all-trans-retinal: the making of RPE bis-retinoids. J. Lipid Res. 51(2), 247261.
  • 50
    Lubart, R., Y. Wollman, H. Friedmann, S. Rochkind and I. Laulicht (1992) Effects of visible and near-infrared lasers on cell cultures. J. Photochem. Photobiol. B 12(3), 305310.
  • 51
    King, A., E. Gottlieb, D. G. Brooks, M. P. Murphy and J. L. Dunaief (2004) Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. Photochem. Photobiol. 79(5), 470475.
  • 52
    Chen, E. (1993) Inhibition of cytochrome oxidase and blue-light damage in rat retina. Graefes Arch. Clin. Exp. Ophthalmol. 231(7), 416423.
  • 53
    Chen, E. (1993) Inhibition of enzymes by short-wave optical radiation and its effect on the retina. Acta Ophthalmol. Suppl. 208, 148.
  • 54
    Chen, E., J. Pallon and B. Forslind (1995) Distribution of calcium and sulphur in the blue-light-exposed rat retina. Graefes Arch. Clin. Exp. Ophthalmol. 233(3), 163167.
  • 55
    Wu, J., A. Gorman, X. Zhou, C. Sandra and E. Chen (2002) Involvement of caspase-3 in photoreceptor cell apoptosis induced by in vivo blue light exposure. Invest. Ophthalmol. Vis. Sci. 43(10), 33493354.
  • 56
    Harper, W. S. and E. R. Gaillard (2001) Studies of all-trans-retinal as a photooxidizing agent. Photochem. Photobiol. 73, 7176.
  • 57
    Pawlak, A., M. Wrona, M. Różanowska, M. Zaręba, L. E. Lamb, J. E. Roberts, J. D. Simon and T. Sarna (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem. Photobiol. 77, 253258.
  • 58
    Maeda, A., T. Maeda, M. Golczak, S. Chou, A. Desai, C. L. Hoppel, S. Matsuyama and K. Palczewski (2009) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J. Biol. Chem. 284, 1517315183.
  • 59
    Różanowska, M., J. Jarvis-Evans, W. Korytowski, M. E. Boulton, J. M. Burke and T. Sarna (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J. Biol. Chem. 270(32), 1882518830.
  • 60
    Różanowska, M., J. Wessels, M. Boulton, J. M. Burke, M. A. Rodgers, T. G. Truscott and T. Sarna (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic. Biol. Med. 24(7-8), 11071112.
  • 61
    Pawlak, A., M. Różanowska, M. Zaręba, L. E. Lamb, J. D. Simon and T. Sarna (2002) Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts. Arch. Biochem. Biophys. 403(1), 5962.
  • 62
    Boulton, M., M. Różanowska and T. Wess (2004) Ageing of the retinal pigment epithelium: implications for transplantation. Graefes Arch. Clin. Exp. Ophthalmol. 242(1), 7684.
  • 63
    Lee, P. P., Z. W. Feldman, J. Ostermann, D. S. Brown and F. A. Sloan (2003) Longitudinal prevalence of major eye diseases. Arch. Ophthalmol. 121(9), 13031310.
  • 64
    Friedman, D. S., B. J. O’Colmain, B. Munoz, S. C. Tomany, C. McCarty, P. T. de Jong, B. Nemesure, P. Mitchell and J. Kempen (2004) Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122(4), 564572.
  • 65
    Klein, R., B. E. Klein and K. L. Linton (1992) Prevalence of age-related maculopathy. The Beaver Dam eye study. Ophthalmology 99(6), 933943.
  • 66
    Klein, R., B. E. Klein, S. C. Tomany, S. M. Meuer and G. H. Huang (2002) Ten-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 109(10), 17671779.
  • 67
    Vingerling, J. R., I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer and P. T. de Jong (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102(2), 205210.
  • 68
    Vingerling, J. R., C. C. Klaver, A. Hofman and P. T. de Jong (1995) Epidemiology of age-related maculopathy. Epidemiol. Rev. 17(2), 347360.
  • 69
    Mitchell, P., W. Smith, K. Attebo and J. J. Wang (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains eye study. Ophthalmology 102(10), 14501460.
  • 70
    Algvere, P. V. and S. Seregard (2002) Age-related maculopathy: pathogenetic features and new treatment modalities. Acta Ophthalmol. Scand. 80, 136143.
  • 71
    Smith, W., J. Assink, R. Klein, P. Mitchell, C. C. Klaver, B. E. Klein, A. Hofman, S. Jensen, J. J. Wang and P. T. de Jong (2001) Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology 108(4), 697704.
  • 72
    Husain, D., B. Ambati, A. P. Adamis and J. W. Miller (2002) Mechanisms of age-related macular degeneration. Ophthalmol. Clin. North Am. 15(1), 8791.
  • 73
    Kinnunen, K., G. Petrovski, M. C. Moe, A. Berta and K. Kaarniranta (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol. 90, 299309.
  • 74
    Young, R. W. (1988) Solar radiation and age-related macular degeneration. Surv. Ophthalmol. 32(4), 252269.
  • 75
    Cruickshanks, K. J., R. Klein and B. E. Klein (1993) Sunlight and age-related macular degeneration. The Beaver Dam eye study. Arch. Ophthalmol. 111(4), 514518.
  • 76
    Tomany, S. C., K. J. Cruickshanks, R. Klein, B. E. Klein and M. D. Knudtson (2004) Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study. Arch. Ophthalmol. 122(5), 750757.
  • 77
    Tomany, S. C., K. J. Cruickshanks, R. Klein, B. E. Klein and M. D. Knudtson (2005) Correction to “Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study”. Arch. Ophthalmol. 123, 362.
  • 78
    Plestina-Borjan, I. and M. Klinger-Lasic (2007) Long-term exposure to solar ultraviolet radiation as a risk factor for age-related macular degeneration. Coll. Antropol. 31(Suppl. 1), 3338.
  • 79
    Darzins, P., P. Mitchell and R. F. Heller (1997) Sun exposure and age-related macular degeneration. An Australian case–control study. Ophthalmology 104(5), 770776.
  • 80
    Hyman, L. G., A. M. Lilienfeld, F. L. Ferris 3rd and S. L. Fine (1983) Senile macular degeneration: a case–control study. Am. J. Epidemiol. 118(2), 213227.
  • 81
    Age-Related Eye Disease Study Research Group (2000) Risk factors associated with age-related macular degeneration. A case–control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107, 22242232.
  • 82
    Age-Related Eye Disease Study Research Group (2009) Age-related eye disease study 2 (AREDS2) protocol .
  • 83
    Fletcher, A. E., G. C. Bentham, M. Agnew, I. S. Young, C. Augood, U. Chakravarthy, P. T. de Jong, M. Rahu, J. Seland, G. Soubrane, L. Tomazzoli, F. Topouzis, J. R. Vingerling and J. Vioque (2008) Sunlight exposure, antioxidants, and age-related macular degeneration. Arch. Ophthalmol. 126(10), 13961403.
  • 84
    Evans, J. (2008) Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye (Lond.) 22(6), 751760.
  • 85
    Winkler, B. S., M. E. Boulton, J. D. Gottsch and P. Sternberg (1999) Oxidative damage and age-related macular degeneration. Mol. Vis. 5, 32.
  • 86
    Beatty, S., H. Koh, M. Phil, D. Henson and M. Boulton (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45(2), 115134.
  • 87
    Glazer, L. C. and T. P. Dryja (2002) Understanding the etiology of Stargardt’s disease. Ophthalmol. Clin. North. Am. 15(1), 93100, viii.
  • 88
    Sundelin, S., U. Wihlmark, S. E. Nilsson and U. T. Brunk (1998) Lipofuscin accumulation in cultured retinal pigment epithelial cells reduces their phagocytic capacity. Curr. Eye Res. 17(8), 851857.
  • 89
    Ng, K. P., B. Gugiu, K. Renganathan, M. W. Davies, X. Gu, J. S. Crabb, S. R. Kim, M. B. Rozanowska, V. L. Bonilha, M. E. Rayborn, R. G. Salomon, J. R. Sparrow, M. E. Boulton, J. G. Hollyfield and J. W. Crabb (2008) Retinal pigment epithelium lipofuscin proteomics. Mol. Cell. Proteomics 7(7), 13971405.
  • 90
    Dorey, C. K., G. Wu, D. Ebenstein, A. Garsd and J. J. Weiter (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest. Ophthalmol. Vis. Sci. 30(8), 16911699.
  • 91
    Boulton, M., F. Docchio, P. Dayhaw-Barker, R. Ramponi and R. Cubeddu (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision. Res. 30(9), 12911303.
  • 92
    Katz, M. L., C. L. Gao and L. M. Rice (1996) Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes. Mech. Ageing Dev. 92(2-3), 159174.
  • 93
    Feeney-Burns, L., E. R. Berman and H. Rothman (1980) Lipofuscin of human retinal pigment epithelium. Am. J. Ophthalmol. 90(6), 783791.
  • 94
    Brunk, U. T., U. Wihlmark, A. Wrigstad, K. Roberg and S. E. Nilsson (1995) Accumulation of lipofuscin within retinal pigment epithelial cells results in enhanced sensitivity to photo-oxidation. Gerontology 41(Suppl. 2), 201212.
  • 95
    Brunk, U. T. and A. Terman (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33(5), 611619.
  • 96
    Biesemeier, A., U. Schraermeyer and O. Eibl (2011) Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues. Exp. Eye Res. 93(1), 2939.
  • 97
    Clancy, C. M. R., J. R. Krogmeier, A. Pawlak, M. Różanowska, T. Sarna, R. C. Dunn and J. D. Simon (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J. Phys. Chem. 104, 1209812101.
  • 98
    Haralampus-Grynaviski, N. M., L. E. Lamb, J. D. Simon, J. R. Krogmeier, R. C. Dunn, A. Pawlak, M. Rozanowska, T. Sarna and J. M. Burke (2001) Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Photochem. Photobiol. 74(2), 364368.
  • 99
    Warburton, S., K. Southwick, R. M. Hardman, A. M. Secrest, R. K. Grow, H. Xin, A. T. Woolley, G. F. Burton and C. D. Thulin (2005) Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin. Mol. Vis. 11, 11221134.
  • 100
    Krogmeier, J. R., C. M. Clancy, A. Pawlak, M. Rozanowska, T. Sarna, J. D. Simon and R. C. Dunn (2001) Mapping the distribution of emissive molecules in human ocular lipofuscin granules with near-field scanning optical microscopy. J. Microsc. 202, 386390.
  • 101
    Haralampus-Grynaviski, N. M., L. E. Lamb, C. M. Clancy, C. Skumatz, J. M. Burke, T. Sarna and J. D. Simon (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc. Natl. Acad. Sci. U.S.A. 100(6), 31793184.
  • 102
    Eldred, G. E. and M. R. Lasky (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361(6414), 724726.
  • 103
    Delori, F. C., D. G. Goger and C. K. Dorey (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest. Ophthalmol. Vis. Sci. 42(8), 18551866.
  • 104
    Weiter, J. J., F. C. Delori, G. L. Wing and K. A. Fitch (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest. Ophthalmol. Vis. Sci. 27(2), 145152.
  • 105
    Różanowska, M., W. Korytowski, B. Rozanowski, C. Skumatz, M. E. Boulton, J. M. Burke and T. Sarna (2002) Photoreactivity of aged human RPE melanosomes: a comparison with lipofuscin. Invest. Ophthalmol. Vis. Sci. 43(7), 20882096.
  • 106
    Warburton, S., W. E. Davis, K. Southwick, H. Xin, A. T. Woolley, G. F. Burton and C. D. Thulin (2007) Proteomic and phototoxic characterization of melanolipofuscin: correlation to disease and model for its origin. Mol. Vis. 13, 318329.
  • 107
    Gouras, P., L. Ivert, J. A. Mattison, D. K. Ingram and M. Neuringer (2008) Drusenoid maculopathy in rhesus monkeys: autofluorescence, lipofuscin and drusen pathogenesis. Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 14031411.
  • 108
    Feeney-Burns, L., C. L. Gao and E. R. Berman (1988) The fate of immunoreactive opsin following phagocytosis by pigment epithelium in human and monkey retinas. Invest. Ophthalmol. Vis. Sci. 29(5), 708719.
  • 109
    Wang, L., M. E. Clark, D. K. Crossman, K. Kojima, J. D. Messinger, J. A. Mobley and C. A. Curcio (2010) Abundant lipid and protein components of drusen. PLoS ONE 5(4), e10329.
  • 110
    Holz, F. G., C. Bellmann, M. Margaritidis, F. Schutt, T. P. Otto and H. E. Volcker (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 237(2), 145152.
  • 111
    Wolf-Schnurrbusch, U. E., V. V. Wittwer, R. Ghanem, M. Niederhaeuser, V. Enzmann, C. Framme and S. Wolf (2011) Blue-light versus green-light autofluorescence: lesion size of areas of geographic atrophy. Invest. Ophthalmol. Vis. Sci. 52(13), 94979502.
  • 112
    Bazan, H. E., N. G. Bazan, L. Feeney-Burns and E. R. Berman (1990) Lipids in human lipofuscin-enriched subcellular fractions of two age populations. Comparison with rod outer segments and neural retina. Invest. Ophthalmol. Vis. Sci. 31(8), 14331443.
  • 113
    Katz, M. L. and W. G. Robison Jr (2002) What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch. Gerontol. Geriatr. 34(3), 169184.
  • 114
    Nilsson, S. E., S. P. Sundelin, U. Wihlmark and U. T. Brunk (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc. Ophthalmol. 106(1), 1316.
  • 115
    Krohne, T. U., N. K. Stratmann, J. Kopitz and F. G. Holz (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp. Eye Res. 90(3), 465471.
  • 116
    Radu, R. A., Q. Yuan, J. Hu, J. H. Peng, M. Lloyd, S. Nusinowitz, D. Bok and G. H. Travis (2008) Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following vitamin A supplementation. Invest. Ophthalmol. Vis. Sci. 49(9), 38213829.
  • 117
    Porta, E. A. (1991) Advances in age pigment research. Arch. Gerontol. Geriatr. 12(2-3), 303320.
  • 118
    Schutt, F., B. Ueberle, M. Schnolzer, F. G. Holz and J. Kopitz (2002) Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett. 528(1-3), 217221.
  • 119
    Schutt, F., M. Bergmann, F. G. Holz and J. Kopitz (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 44(8), 36633668.
  • 120
    Boulton, M., M. Różanowska, B. Różanowski and T. Wess (2004) The photoreactivity of ocular lipofuscin. Photochem. Photobiol. Sci. 3(8), 759764.
  • 121
    Renganathan, K., K. P. Ng, M. Davies, X. Gu, M. Różanowska, M. E. Rayborn, R. G. Salomon, J. G. Hollyfield, M. E. Boulton and J. W. Crabb (2007) Does lipofuscin contain protein? Amino acid, protein and ultrastructural analysis of human lipofuscin. Invest. Ophthalmol. Vis. Sci. 48, E-Abstract 5059.
  • 122
    Yin, D. (1995) Studies on age pigments evolving into a new theory of biological aging. Gerontology 41(Suppl. 2), 159172.
  • 123
    Sparrow, J. R. and M. Boulton (2005) RPE lipofuscin and its role in retinal pathobiology. Exp. Eye Res. 80(5), 595606.
  • 124
    Sparrow, J. R., Y. Wu, T. Nagasaki, K. D. Yoon, K. Yamamoto and J. Zhou (2010) Fundus autofluorescence and the bisretinoids of retina. Photochem. Photobiol. Sci. 9(11), 14801489.
  • 125
    Marmorstein, A. D., L. Y. Marmorstein, H. Sakaguchi and J. G. Hollyfield (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s membrane, and sub-RPE deposits in normal and AMD eyes. Invest. Ophthalmol. Vis. Sci. 43(7), 24352441.
  • 126
    Docchio, F., M. Boulton, R. Cubeddu, R. Ramponi and P. D. Barker (1991) Age-related changes in the fluorescence of melanin and lipofuscin granules of the retinal pigment epithelium: a time-resolved fluorescence spectroscopy study. Photochem. Photobiol. 54(2), 247253.
  • 127
    Eldred, G. E., G. V. Miller, W. S. Stark and L. Feeney-Burns (1982) Lipofuscin: resolution of discrepant fluorescence data. Science 216(4547), 757759.
  • 128
    Terman, A. and U. T. Brunk (1999) Is lipofuscin eliminated from cells? Invest. Ophthalmol. Vis. Sci. 40(10), 24632464.
  • 129
    Gaillard, E. R., S. J. Atherton, G. Eldred and J. Dillon (1995) Photophysical studies on human retinal lipofuscin. Photochem. Photobiol. 61(5), 448453.
  • 130
    Reszka, K., G. E. Eldred, R. H. Wang, C. Chignell and J. Dillon (1995) The photochemistry of human retinal lipofuscin as studied by EPR. Photochem. Photobiol. 62(6), 10051008.
  • 131
    Boulton, M., A. Dontsov, J. Jarvis-Evans, M. Ostrovsky and D. Svistunenko (1993) Lipofuscin is a photoinducible free radical generator. J. Photochem. Photobiol. B 19(3), 201204.
  • 132
    Różanowska, M., A. Pawlak, B. Różanowski, C. Skumatz, M. Zaręba, M. E. Boulton, J. M. Burke, T. Sarna and J. D. Simon (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest. Ophthalmol. Vis. Sci. 45(4), 10521060.
  • 133
    Avalle, L. B., J. Dillon, S. Tari and E. R. Gaillard (2005) A new approach to measuring the action spectrum for singlet oxygen production by human retinal lipofuscin. Photochem. Photobiol. 81, 13471350.
  • 134
    Dontsov, A. E., R. D. Glickman and M. A. Ostrovsky (1999) Retinal pigment epithelium pigment granules stimulate the photo-oxidation of unsaturated fatty acids. Free Radic. Biol. Med. 26(11-12), 14361446.
  • 135
    Wassell, J., S. Davies, W. Bardsley and M. Boulton (1999) The photoreactivity of the retinal age pigment lipofuscin. J. Biol. Chem. 274(34), 2382823832.
  • 136
    Shamsi, F. A. and M. Boulton (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest. Ophthalmol. Vis. Sci. 42(12), 30413046.
  • 137
    Davies, S., M. H. Elliott, E. Floor, T. G. Truscott, M. Zareba, T. Sarna, F. A. Shamsi and M. E. Boulton (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic. Biol. Med. 31(2), 256265.
  • 138
    Crouch, R. K., G. J. Chader, B. Wiggert and D. R. Pepperberg (1996) Retinoids and the visual process. Photochem. Photobiol. 64(4), 613621.
  • 139
    McBee, J. K., K. Palczewski, W. Baehr and D. R. Pepperberg (2001) Confronting complexicity: the interlink of phototransduction and retinoid metabolism in vertebrate retina. Prog. Retin. Eye Res. 20, 469529.
  • 140
    Imanishi, Y., M. L. Batten, D. W. Piston, W. Baehr and K. Palczewski (2004) Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 164(3), 373383.
  • 141
    Travis, G. H., M. Golczak, A. R. Moise and K. Palczewski (2007) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu. Rev. Pharmacol. Toxicol. 47, 469512.
  • 142
    Maeda, A., M. Golczak, T. Maeda and K. Palczewski (2009) Limited roles of Rdh8, Rdh12, and Abca4 in all-trans-retinal clearance in mouse retina. Invest. Ophthalmol. Vis. Sci. 50(11), 54355443.
  • 143
    Lai, Y. L., A. T. Tsin, K. W. Lam and J. J. Garcia (1985) Distribution of retinoids in different compartments of the posterior segment of the rabbit eye. Brain Res. Bull. 15(2), 143147.
  • 144
    Maeda, A., T. Maeda, M. Golczak and K. Palczewski (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J. Biol. Chem. 283, 2668426693.
  • 145
    Sun, H. and J. Nathans (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat. Genet. 17, 1516.
  • 146
    Sun, H., R. S. Molday and J. Nathans (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J. Biol. Chem. 274, 82698281.
  • 147
    Gao, X. and P. Talalay (2004) Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc. Natl. Acad. Sci. U.S.A. 101(28), 1044610451.
  • 148
    Chrispell, J. D., K. L. Feathers, M. A. Kane, C. Y. Kim, M. Brooks, R. Khanna, I. Kurth, C. A. Hubner, A. Gal, A. J. Mears, A. Swaroop, J. L. Napoli, J. R. Sparrow and D. A. Thompson (2009) Rdh12 activity and effects on retinoid processing in the murine retina. J. Biol. Chem. 284, 2146821477.
  • 149
    Maeda, T., A. Maeda, P. Leahy, D. A. Saperstein and K. Palczewski (2009) Effects of long-term administration of 9-cis-retinyl acetate on visual function in mice. Invest. Ophthalmol. Vis. Sci. 50(1), 322333.
  • 150
    Saari, J. C., G. G. Garwin, J. P. Van Hooser and K. Palczewski (1998) Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision. Res. 38, 13251333.
  • 151
    Yang, M. and H. K. Fong (2002) Synthesis of the all-trans-retinal chromophore of retinal G protein-coupled receptor opsin in cultured pigment epithelial cells. J. Biol. Chem. 277(5), 33183324.
  • 152
    Katz, M. L. and T. M. Redmond (2001) Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 42(12), 30233030.
  • 153
    Tolleson, W. H., S. H. Cherng, Q. Xia, M. Boudreau, J. J. Yin, W. G. Wamer, P. C. Howard, H. Yu and P. P. Fu (2005) Photodecomposition and phototoxicity of natural retinoids. Int. J. Environ. Res. Public Health 2, 147155.
  • 154
    Wielgus, A. R., C. F. Chignell, P. Ceger and J. E. Roberts (2010) Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells. Photochem. Photobiol. 86(4), 781791.
  • 155
    Siems, W., O. Sommerburg, L. Schild, W. Augustin, C. D. Langhans and I. Wiswedel (2002) Beta-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J. 16, 12891291.
  • 156
    Różanowski, B., M. B. Różanowska and M. E. Boulton (2003) Toxicity of all-trans retinal to the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1643.
  • 157
    Baron, M. H., M. J. Coulange, C. Coupry, D. Baron, J. Favrot and M. M. Abo Aly (1989) All-trans retinal photoisomerization and photooxidation from UV laser radiation. Vibrational assignment of all-trans 5,8-peroxyretinal. Photochem. Photobiol. 49, 739751.
  • 158
    Loginova, M. Y., Y. V. Rostovtseva, T. B. Feldman and M. A. Ostrovsky (2008) Light damaging action of all-trans-retinal and its derivatives on rhodopsin molecules in the photoreceptor membrane. Biochemistry (Mosc.) 73(2), 130138.
  • 159
    Dillon, J., E. R. Gaillard, P. Bilski, C. F. Chignell and K. J. Reszka (1996) The photochemistry of the retinoids as studied by steady-state and pulsed methods. Photobiol. Photochem. 63(5), 680685.
  • 160
    Różanowska, M. B., R. Edge, E. T. Land, S. Navaratnam, T. G. Truscott and B. Różanowski (2007) Free radical interactions of retinal constituents—retinaldehyde and its adducts with phosphatidylethanolamine. Invest. Ophthalmol. Vis. Sci. 48, E-Abstract 3258.
  • 161
    Ostrovskii, M. A. and I. B. Fedorovich (1994) [Retinal as a photo-damage sensitizer of retinal-containing retina proteins]. Biofizika 39, 1325.
  • 162
    Sun, H. and J. Nathans (2001) ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease. J. Biol. Chem. 276, 1176611774.
  • 163
    Fedorovich, I. B., E. M. Semenova, K. Grant, C. A. Converse and M. A. Ostrovsky (2000) Photosensitized light-induced damage of IRBP (interphotoreceptor retinoid-binding protein): effects on binding properties. Curr. Eye Res. 21, 975980.
  • 164
    Kanan, Y., G. Moiseyev, N. Agarwal, J. X. Ma and M. R. Al-Ubaidi (2007) Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Invest. Ophthalmol. Vis. Sci. 48, 4051.
  • 165
    Sakai, N., J. Decatur, K. Nakanishi and G. E. Eldred (1996) Ocular age pigment “A2-E”: an unprecedented pyridinium bisretinoid. J. Am. Chem. Soc. 118, 15591560.
  • 166
    Mata, N. L., J. Weng and G. H. Travis (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc. Natl. Acad. Sci. U.S.A. 97(13), 17151759.
  • 167
    Eldred, G. E. (1993) Age pigment structure. Nature 364(6436), 396.
  • 168
    Parish, C. A., M. Hashimoto, K. Nakanishi, J. Dillon and J. Sparrow (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc. Natl. Acad. Sci. U.S.A. 95(25), 1460914613.
  • 169
    Sparrow, J. R., C. A. Parish, M. Hashimoto and K. Nakanishi (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest. Ophthalmol. Vis. Sci. 40, 29882995.
  • 170
    Liu, J., Y. Itagaki, S. Ben-Shabat, K. Nakanishi and J. R. Sparrow (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J. Biol. Chem. 275(38), 2935429360.
  • 171
    Ben-Shabat, S., C. A. Parish, M. Hashimoto, J. Liu, K. Nakanishi and J. R. Sparrow (2001) Fluorescent pigments of the retinal pigment epithelium and age-related macular degeneration. Bioorg. Med. Chem. Lett. 11(12), 15331540.
  • 172
    Ben-Shabat, S., C. A. Parish, H. R. Vollmer, Y. Itagaki, N. Fishkin, K. Nakanishi and J. R. Sparrow (2002) Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J. Biol. Chem. 277(9), 71837190.
  • 173
    Ragauskaite, L., R. C. Heckathorn and E. R. Gaillard (2001) Environmental effects on the photochemistry of A2-E, a component of human retinal lipofuscin. Photochem. Photobiol. 74(3), 483488.
  • 174
    Roberts, J. E., B. M. Kukiełczak, D. N. Hu, D. S. Miller, P. Bilski, R. H. Sik, A. G. Motten and C. F. Chignell (2002) The role of A2E in prevention or enhancement of light damage in human retinal pigment epithelial cells. Photochem. Photobiol. 75(2), 184190.
  • 175
    Schutt, F., M. Bergmann, F. G. Holz, S. Dithmar, H. E. Volcker and J. Kopitz (2007) Accumulation of A2-E in mitochondrial membranes of cultured RPE cells. Graefes Arch. Clin. Exp. Ophthalmol. 245, 391398.
  • 176
    Bhosale, P., B. Serban and P. S. Bernstein (2009) Retinal carotenoids can attenuate formation of A2E in the retinal pigment epithelium. Arch. Biochem. Biophys. 483(2), 175181.
  • 177
    Wu, Y., J. Zhou, N. Fishkin, B. E. Rittmann and J. R. Sparrow (2011) Enzymatic degradation of A2E, a retinal pigment epithelial lipofuscin bisretinoid. J. Am. Chem. Soc. 133(4), 849857.
  • 178
    Lakkaraju, A., S. C. Finnemann and E. Rodriguez-Boulan (2007) The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 104(26), 1102611031.
  • 179
    Biswas-Fiss, E. E., D. S. Kurpad, K. Joshi and S. B. Biswas (2010) Interaction of extracellular domain 2 of the human retina-specific ATP-binding cassette transporter (ABCA4) with all-trans-retinal. J. Biol. Chem. 285(25), 1937219383.
  • 180
    Grey, A. C., R. K. Crouch, Y. Koutalos, K. L. Schey and Z. Ablonczy (2011) Spatial localization of A2E in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 52(7), 39263933.
  • 181
    Roberts, J. E., D.-N. Hu, K. Nakanishi, P. Taroni and R. Cubeddu (1999) Cell growth, absorbance and fluorescence changes in retinal pigment epithelium cells in the presence of A2E (putative precursor of lipofuscin). Invest. Ophthalmol. Vis. Sci. 40(4), E-Abstract 223.
  • 182
    Holz, F. G., F. Schutt, J. Kopitz, G. E. Eldred, F. E. Kruse, H. E. Volcker and M. Cantz (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest. Ophthalmol. Vis. Sci. 40(3), 737743.
  • 183
    Mata, N. L., R. T. Tzekov, X. Liu, J. Weng, D. G. Birch and G. H. Travis (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 42(8), 16851690.
  • 184
    Radu, R. A., N. L. Mata, A. Bagla and G. H. Travis (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc. Natl. Acad. Sci. U.S.A. 101(16), 59285933.
  • 185
    Cubeddu, R., P. Taroni, D.-N. Hu, N. Sakai, K. Nakanishi and J. E. Roberts (1999) Photophysical studies of A2-E, putative precursor of lipofuscin, in human retinal pigment epithelial cells. Photochem. Photobiol. 70(2), 172175.
  • 186
    Vives-Bauza, C., M. Anand, A. K. Shirazi, J. Magrane, J. Gao, H. R. Vollmer-Snarr, G. Manfredi and S. C. Finnemann (2008) The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J. Biol. Chem. 283(36), 2477024780.
  • 187
    Shaban, H., P. Gazzotti and C. Richter (2001) Cytochrome c oxidase inhibition by N-retinyl-N-retinylidene ethanolamine, a compound suspected to cause age-related macula degeneration. Arch. Biochem. Biophys. 394(1), 111116.
  • 188
    Bergmann, M., F. Schutt, F. G. Holz and J. Kopitz (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J. 18, 562564.
  • 189
    Finnemann, S. C., L. W. Leung and E. Rodriguez-Boulan (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc. Natl. Acad. Sci. U.S.A. 99(6), 38423847.
  • 190
    Lamb, L. E., T. Ye, N. M. Haralampus-Grynaviski, T. R. Williams, A. Pawlak, T. Sarna and J. D. Simon (2001) Primary photophysical properties of A2E in solution. J. Phys. Chem. 105, 1150711512.
  • 191
    De, S. and T. P. Sakmar (2002) Interaction of A2E with model membranes. Implications to the pathogenesis of age-related macular degeneration. J. Gen. Physiol. 120, 147157.
  • 192
    Cantrell, A., D. J. McGarvey, J. Roberts, T. Sarna and T. G. Truscott (2001) Photochemical studies of A2-E. J. Photochem. Photobiol., B 64(2-3), 162165.
  • 193
    Bynoe, L. A., L. V. Del Priore and R. Hornbeck (1998) Photosensitization of retinal pigment epithelium by protoporphyrin IX. Graefes Arch. Clin. Exp. Ophthalmol. 236(3), 230233.
  • 194
    Sparrow, J. R., H. R. Vollmer-Snarr, J. Zhou, Y. P. Jang, S. Jockusch, Y. Itagaki and K. Nakanishi (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278(20), 1820718213.
  • 195
    Kanofsky, J. R., P. D. Sima and C. Richter (2003) Singlet-oxygen generation from A2E. Photochem. Photobiol. 77(3), 235242.
  • 196
    Gaillard, E. R., L. B. Avalle, L. M. Keller, Z. Wang, K. J. Reszka and J. P. Dillon (2004) A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin. Exp. Eye Res. 79(3), 313319.
  • 197
    Broniec, A., A. Pawlak, T. Sarna, A. Wielgus, J. E. Roberts, E. J. Land, T. G. Truscott, R. Edge and S. Navaratnam (2005) Spectroscopic properties and reactivity of free radical forms of A2E. Free Radic. Biol. Med. 38, 10371046.
  • 198
    Ben-Shabat, S., Y. Itagaki, S. Jockusch, J. R. Sparrow, N. J. Turro and K. Nakanishi (2002) Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew. Chem. Int. Ed. Engl. 41(5), 814817.
  • 199
    Sparrow, J. R., J. Zhou, S. Ben-Shabat, H. Vollmer, Y. Itagaki and K. Nakanishi (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest. Ophthalmol. Vis. Sci. 43(4), 12221227.
  • 200
    Avalle, L. B., Z. Wang, J. P. Dillon and E. R. Gaillard (2004) Observation of A2E oxidation products in human retinal lipofuscin. Exp. Eye Res. 78(4), 895898.
  • 201
    Dillon, J., Z. Wang, L. B. Avalle and E. R. Gaillard (2004) The photochemical oxidation of A2E results in the formation of a 5,8,5′,8′-bis-furanoid oxide. Exp. Eye Res. 79(4), 537542.
  • 202
    Jang, Y. P., H. Matsuda, Y. Itagaki, K. Nakanishi and J. R. Sparrow (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J. Biol. Chem. 280(48), 3973239739.
  • 203
    Schutt, F., S. Davies, J. Kopitz, F. G. Holz and M. E. Boulton (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest. Ophthalmol. Vis. Sci. 41(8), 23032308.
  • 204
    Sparrow, J. R., K. Nakanishi and C. A. Parish (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest. Ophthalmol. Vis. Sci. 41(7), 19811989.
  • 205
    Sparrow, J. R. and B. Cai (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest. Ophthalmol. Vis. Sci. 42(6), 13561362.
  • 206
    Harper, W. S. and E. R. Gaillard (2003) A photochemical study of (E,E,E,E)-2-[9-(2-hydroxyethyl)imino-3,7-dimethyl-1,3,5,7-decatrien-1-yl]- 1,3,3-trimethylcyclohexene, a derivative of all-trans-retinal and ethanolamine. Photochem. Photobiol. 78(3), 298305.
  • 207
    Jockusch, S., R. X. Ren, Y. P. Jang, Y. Itagaki, H. R. Vollmer-Snarr, J. R. Sparrow, K. Nakanishi and N. J. Turro (2004) Photochemistry of A1E, a retinoid with a conjugated pyridinium moiety: competition between pericyclic photooxygenation and pericyclization. J. Am. Chem. Soc. 126(14), 46464652.
  • 208
    Fishkin, N., Y. P. Jang, Y. Itagaki, J. R. Sparrow and K. Nakanishi (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org. Biomol. Chem. 1(7), 11011105.
  • 209
    Fishkin, N. E., J. R. Sparrow, R. Allikmets and K. Nakanishi (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. Proc. Natl. Acad. Sci. U.S.A. 102(20), 70917096.
  • 210
    Kim, S. R., Y. P. Jang, S. Jockusch, N. E. Fishkin, N. J. Turro and J. R. Sparrow (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc. Natl. Acad. Sci. U.S.A. 104, 1927319278.
  • 211
    Wu, Y., N. E. Fishkin, A. Pande, J. Pande and J. R. Sparrow (2009) Novel lipofuscin bisretinoids prominent in human retina and in a model of recessive Stargardt disease. J. Biol. Chem. 284(30), 2015520166.
  • 212
    Kim, S. R., Y. P. Jang and J. R. Sparrow (2010) Photooxidation of RPE lipofuscin bisretinoids enhances fluorescence intensity. Vision. Res. 50(7), 729736.
  • 213
    Bui, T. V., Y. Han, R. A. Radu, G. H. Travis and N. L. Mata (2006) Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J. Biol. Chem. 281(26), 1811218119.
  • 214
    Sparrow, J. R., K. D. Yoon, Y. Wu and K. Yamamoto (2010) Interpretations of fundus autofluorescence from studies of the bisretinoids of the retina. Invest. Ophthalmol. Vis. Sci. 51, 43514357.
  • 215
    Yamamoto, K., K. D. Yoon, K. Ueda, M. Hashimoto and J. R. Sparrow (2011) A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Invest. Ophthalmol. Vis. Sci. 52(12), 90849090.
  • 216
    Wang, Z., L. M. Keller, J. Dillon and E. R. Gaillard (2006) Oxidation of A2E results in the formation of highly reactive aldehydes and ketones. Photochem. Photobiol. 82(5), 12511257.
  • 217
    Wu, Y., E. Yanase, X. Feng, M. M. Siegel and J. R. Sparrow (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc. Natl. Acad. Sci. U.S.A. 107(16), 72757280.
  • 218
    Zhou, J., Y. P. Jang, S. R. Kim and J. R. Sparrow (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc. Natl. Acad. Sci. U.S.A. 103(44), 1618216187.
  • 219
    Kim, S. R., K. Nakanishi, Y. Itagaki and J. R. Sparrow (2006) Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp. Eye Res. 82(5), 828839.
  • 220
    Wihlmark, U., A. Wrigstad, K. Roberg, S. E. Nilsson and U. T. Brunk (1997) Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic. Biol. Med. 22(7), 12291234.
  • 221
    Godley, B. F., F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies and M. Boulton (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 280(22), 2106121066.
  • 222
    Gottsch, J. D., L. A. Bynoe, J. B. Harlan, E. V. Rencs and W. R. Green (1993) Light-induced deposits in Bruch’s membrane of protoporphyric mice. Arch. Ophthalmol. 111(1), 126129.
  • 223
    Sparrow, J. R., J. Zhou and B. Cai (2003) DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination. Invest. Ophthalmol. Vis. Sci. 44(5), 22452251.
  • 224
    Wirz-Justice, A. (1994) A decade of light therapy for seasonal affective disorder. In Biological Effects of Light (Edited by E. G. Jung and A. M. Kligman), pp. 191205. Walter de Gruyter, New York.
  • 225
    Terman, M., L. Amira, J. S. Terman and D. C. Ross (1996) Predictors of response and nonresponse to light treatment for winter depression. Am. J. Psychiatry 153(11), 14231429.
  • 226
    Schwartz, P. J., C. Brown, T. A. Wehr and N. E. Rosenthal (1996) Winter seasonal affective disorder: a follow-up study of the first 59 patients of the National Institute of Mental Health Seasonal Studies Program. Am. J. Psychiatry 153(8), 10281036.
  • 227
    Lewy, A. J., H. A. Kern, N. E. Rosenthal and T. A. Wehr (1982) Bright artificial light treatment of a manic-depressive patient with a seasonal mood cycle. Am. J. Psychiatry 139(11), 14961498.
  • 228
    Wever, R. A. (1985) Use of light to treat jet lag: differential effects of normal and bright artificial light on human circadian rhythms. Ann. N. Y. Acad. Sci. 453, 282304.
  • 229
    Figueiro, M. G., A. Bierman, J. D. Bullough and M. S. Rea (2009) A personal light-treatment device for improving sleep quality in the elderly: dynamics of nocturnal melatonin suppression at two exposure levels. Chronobiol. Int. 26(4), 726739.
  • 230
    Roberts, J. E. (2010) Circadian rhythm and human health .
  • 231
    Cunha-Vaz, J. G. (1980) Blood–retinal barriers in health and disease. Trans. Ophthalmol. Soc. U.K. 100, 337340.
  • 232
    Gomer, C. J., J. V. Jester, N. J. Razum, B. C. Szirth and A. L. Murphree (1985) Photodynamic therapy of intraocular tumors: examination of hematoporphyrin derivative distribution and long-term damage in rabbit ocular tissue. Cancer Res. 45(8), 37183725.
  • 233
    Tse, D. T., J. J. Dutton, T. A. Weingeist, V. M. Hermsen and R. C. Kersten (1984) Hematoporphyrin photoradiation therapy for intraocular and orbital malignant melanoma. Arch. Ophthalmol. 102(6), 833838.
  • 234
    Nishiwaki, H., R. Zeimer, M. F. Goldberg, S. A. D’Anna, S. A. Vinores and R. Grebe (2002) Laser targeted photo-occlusion of rat choroidal neovascularization without collateral damage. Photochem. Photobiol. 75(2), 149158.
  • 235
    Urbańska, K., B. Romanowska-Dixon, M. Elas, S. Pająk, E. Paziewski, J. Bryk, B. Kukiełczak, A. Słomiński, H. Żygulska-Mach and S. Łukiewicz (2000) Experimental ruthenium plaque therapy of amelanotic and melanotic melanomas in the hamster eye. Melanoma Res. 10(1), 2635.
  • 236
    Pece, A., V. Isola, M. Vadala and G. Calori (2007) Photodynamic therapy with verteporfin for choroidal neovascularization associated with retinal pigment epithelial detachment in age-related macular degeneration. Retina 27, 342348.
  • 237
    Gomi, F., M. Ohji, K. Sayanagi, M. Sawa, H. Sakaguchi, Y. Oshima, Y. Ikuno and Y. Tano (2008) One-year outcomes of photodynamic therapy in age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology 115, 141146.
  • 238
    Incorvaia, C., C. Campa, F. Parmeggiani, M. Menzione, S. D’Angelo, M. Della Corte, M. Rinaldi, M. Romano, R. Dell’omo and C. Costagliola (2008) 12-month retrospective study and review of photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in age-related macular degeneration. Retina 28(2), 289297.
  • 239
    Ferrario, A., A. M. Fisher, N. Rucker and C. J. Gomer (2005) Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res. 65, 94739478.
  • 240
    Ji, Z. Q., H. F. Sun, H. F. Wang, Q. Y. Xie, Y. F. Liu and Z. Wang (2006) Biodistribution and tumor uptake of C-60(OH)(x) in mice. J. Nanopart. Res. 8, 5363.
  • 241
    Zhao, B., Y. Y. He, C. F. Chignell, J. J. Yin, U. Andley and J. E. Roberts (2009) Difference in phototoxicity of cyclodextrin complexed fullerene [(gamma-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem. Res. Toxicol. 22(4), 660667.
  • 242
    Yamago, S., H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto and F. Ambe (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol. 2, 385389.
  • 243
    Calvo, P., A. Sanchez, J. Martinez, M. I. Lopez, M. Calonge, J. C. Pastor and M. J. Alonso (1996) Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm. Res. 13, 311315.
  • 244
    Dugan, L. L., D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K. Shen, T. Y. Luh, D. W. Choi and T. S. Lin (1997) Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. U.S.A. 94, 94349439.
  • 245
    Da Ros, T. and M. Prato (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 663669.
  • 246
    Nakamura, E. and H. Isobe (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807815.
  • 247
    Prow, T. W., I. Bhutto, R. Grebe, K. Uno, C. Merges, D. S. McLeod and G. A. Lutty (2008) Nanoparticle-delivered biosensor for reactive oxygen species in diabetes. Vision. Res. 48(3), 478485.
  • 248
    Bejjani, R. A., D. BenEzra, H. Cohen, J. Rieger, C. Andrieu, J. C. Jeanny, G. Gollomb and F. F. Behar-Cohen (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol. Vis. 11, 124132.
  • 249
    Bourges, J. L., S. E. Gautier, F. Delie, R. A. Bejjani, J. C. Jeanny, R. Gurny, D. BenEzra and F. F. Behar-Cohen (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest. Ophthalmol. Vis. Sci. 44, 35623569.
  • 250
    Roberts, J. E., A. R. Wielgus, W. K. Boyes, U. Andley and C. F. Chignell (2008) Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol. Appl. Pharmacol. 228(1), 4958.
  • 251
    Wielgus, A. R., B. Zhao, C. F. Chignell, D. N. Hu and J. E. Roberts (2010) Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol. Appl. Pharmacol. 242(1), 7990.
  • 252
    Oberdorster, G., E. Oberdorster and J. Oberdorster (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823839.
  • 253
    Balbus, J. M., A. D. Maynard, V. L. Colvin, V. Castranova, G. P. Daston, R. A. Denison, K. L. Dreher, P. L. Goering, A. M. Goldberg, K. M. Kulinowski, N. A. Monteiro-Riviere, G. Oberdorster, G. S. Omenn, K. E. Pinkerton, K. S. Ramos, K. M. Rest, J. B. Sass, E. K. Silbergeld and B. A. Wong (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ. Health Perspect. 115, 16541659.
  • 254
    Taroni, P., C. D’Andrea, G. Valentini, R. Cubeddu, D. N. Hu and J. E. Roberts (2011) Fullerol in human lens and retinal pigment epithelial cells: time domain fluorescence spectroscopy and imaging. Photochem. Photobiol. Sci. 10(6), 904910.
  • 255
    Zhao, B., J. J. Yin, P. J. Bilski, C. F. Chignell, J. E. Roberts and Y. Y. He (2009) Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol. Appl. Pharmacol. 241(2), 163172.
  • 256
    Sanders, K., L. L. Degn, W. R. Mundy, R. M. Zucker, K. Dreher, B. Zhao, J. E. Roberts and W. K. Boyes (2011) In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol. Appl. Pharmacol. 258, 226236.
  • 257
    Vitiello, B. (1999) Hypericum perforatum extracts as potential antidepressants. J. Pharm. Pharmacol. 51, 513517.
  • 258
    Whiskey, E., U. Werneke and D. Taylor (2001) A systematic review and meta-analysis of Hypericum perforatum in depression: a comprehensive clinical review. Int. Clin. Psychopharmacol. 16, 239252.
  • 259
    (2001) Final report on the safety assessment of Hypericum perforatum extract and Hypericum perforatum oil. Int. J. Toxicol. 20, 3139.
  • 260
    Higuchi, A. H., H. Yamada, E. Yamada and M. Matsumura (2003) Inhibitory effect of hypericin on retinal and choroidal neovascularization. Invest. Ophtalmol. Vis. Sci. 44, E-Abstract 554.
  • 261
    Harris, M. S., T. Sakamoto, H. Kimura, S. He, C. Spee, R. Gopalakrishna, U. Gundimeda, J. S. Yoo, D. R. Hinton and S. J. Ryan (1996) Hypericin inhibits cell growth and induces apoptosis in retinal pigment epithelial cells: possible involvement of protein kinase C. Curr. Eye Res. 15, 255262.
  • 262
    Ehrenberg, B., J. L. Anderson and C. S. Foote (1998) Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem. Photobiol. 68, 135140.
  • 263
    Gulick, R. M., V. McAuliffe, J. Holden-Wiltse, C. Crumpacker, L. Liebes, D. S. Stein, P. Meehan, S. Hussey, J. Forcht and F. T. Valentine (1999) Phase I studies of hypericin, the active compound in St. John’s Wort, as an antiretroviral agent in HIV-infected adults. AIDS Clinical Trials Group Protocols 150 and 258. Ann. Intern. Med. 130, 510514.
  • 264
    Cotterill, J. A. (2001) Severe phototoxic reaction to laser treatment in a patient taking St John’s Wort. J. Cosmet. Laser Ther. 3, 159160.
  • 265
    He, Y.-Y., C. F. Chignell, D. S. Miller, U. P. Andley and J. E. Roberts (2004) Phototoxicity in human lens epithelial cells promoted by St. John’s Wort. Photochem. Photobiol. 80, 583586.
  • 266
    Sgarbossa, A., N. Angelini, D. Gioffre, T. Youssef, F. Lenci and J. E. Roberts (2000) The uptake, location and fluorescence of hypericin in bovine intact lens. Curr. Eye Res. 21, 597601.
  • 267
    Taroni, P., G. Valentini, D. Comelli, C. D’Andrea, R. Cubeddu, D.-N. Hu and J. E. Roberts (2005) Time-resolved microspectrofluorimetry and fluorescence lifetime imaging of hypericin in human retinal pigment epithelial cells. Photochem. Photobiol. 81, 524528.
  • 268
    Wielgus, A. R., C. F. Chignell, D. S. Miller, B. Van Houten, J. Meyer, D.-N. Hu and J. E. Roberts (2007) Phototoxicity in human retinal pigment epithelial cells promoted by hypericin, a component of St. John’s Wort. Photochem. Photobiol. 83(3), 706713.
  • 269
    Wu, W.-C., D.-N. Hu and J. E. Roberts (2005) Phototoxicity of indocyanine green on human retinal pigment epithelium in vitro and its reduction by lutein. Photochem. Photobiol. 81, 537540.
  • 270
    Chen, G. and Z. Djuric (2001) Carotenoids are degraded by free radicals but do not affect lipid peroxidation in unilamellar liposomes under different oxygen tensions. FEBS Lett. 505(1), 151154.
  • 271
    Cantrell, A., D. J. McGarvey, T. G. Truscott, F. Rancan and F. Bohm (2003) Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys. 412(1), 4754.
  • 272
    Feher, J., I. Kovacs, M. Artico, C. Cavallotti, A. Papale and C. Balacco Gabrieli (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging 27, 983993.