SEARCH

SEARCH BY CITATION

References

  • 1
    Lewis, N. S. and D. G. Nocera (2006) Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 1572915735.
  • 2
    McConnell, I., G. Li and G. W. Brudvig (2010) Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434447.
  • 3
    Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Wöll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 13851390.
  • 4
    Lubner, C. E., P. Knörzer, P. J. Silva, K. A. Vincent, T. Happe, D. A. Bryant and J. H. Golbeck (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49, 1026410266.
  • 5
    Ciobanu, M., H. A. Kincaid, V. Lo, A. D. Dukes, G. K. Jennings and D. E. Cliffel (2007) Electrochemistry and photoelectrochemistry of photosystem I adsorbed on hydroxyl-terminated monolayers. J. Electroanal. Chem. 599, 7278.
  • 6
    Vittadello, M., M. Y. Gorbunov, D. T. Mastrogiovanni, L. S. Wielunski, E. L. Garfunkel, F. Guerrero, D. Kirilovsky, M. Sugiura, A. W. Rutherford, A. Safari and P. Falkowski (2010) Photoelectron generation by photosystem II reaction centers tethered to gold surfaces. ChemSusChem. 3, 471475.
  • 7
    Magis, G., M.-J. den Hollander, W. G. Onderwaater, J. D. Olsen, C. N. Hunter, T. J. Aartsma and R. N. Frese (2010) Light harvesting, energy transfer and electron cycling of a native photosynthetic membrane adhered onto a gold-surface. Biochim. Biophys. Acta 1798, 637645.
  • 8
    Lu, Y., J. Xu, B. Liu and J. Kong (2007) Photosynthetic reaction center functionalized nano-composite films: Effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein. Biosens. Bioelectron. 22, 11731185.
  • 9
    Trammell, S. A., L. Wang, J. M. Zullo, R. Shashidhar and N. Lebedev (2004) Oriented binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. Biosens. Bioelectron. 19, 16491655.
  • 10
    Lebedev, N., S. A. Trammell, A. Spano, E. Lukashev, I. Griva and J. Schnur (2006) Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. J. Am. Chem. Soc. 128, 1204412045.
  • 11
    Griva, I., J. M. Schnur and N. Lebedev (2010) The role of electrode curvature in controlling electron transfer between the photosynthetic reaction center protein and gold nanoelectrodes. ChemPhysChem 11, 35893591.
  • 12
    Suemori, Y., M. Nagata, Y. Nakamura, K. Nakagawa, A. Okuda, J.-I. Inagaki, K. Shinohara, M. Ogawa, K. Iida, T. Dewa, K. Yamashita, A. Gardiner, R. J. Cogdell and M. Nango (2006) Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode. Photosynth. Res. 90, 1721.
  • 13
    Parson, W. W. and A. Warshel (2009) Mechanism of charge separation in purple bacterial reaction centers. In The Purple Phototrophic Bacteria (Edited by C. N. Hunter, F. Daldal, M. C. Thurnauer and J. T. Beatty), pp. 355377. Springer, Dordrecht, The Netherlands.
  • 14
    O’Regan, B. and M. Grätzel (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737740.
  • 15
    Inamine, G. S. and R. A. Niederman (1982) Development and growth of photosynthetic membranes of Rhodospirillum rubrum. J. Bacteriol. 150, 11451153.
  • 16
    Ormerod, J. G., K. S. Ormerod and H. Gest (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch. Biochem. Biophys. 94, 449463.
  • 17
    Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl–, Br–, l–, CN–, and SCN–) on nanocrystalline titanium dioxide electrodes. J. Amer. Chem. Soc. 115, 63826390.
  • 18
    Ahmed, S., A. Du Pasquier, D. P. Birnie III and T. Asefa (2011) Self-assembled TiO2 with increased photoelectron production, and improved conduction and transfer: Enhancing photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 3, 30023010.
  • 19
    Karrasch, S., P. A. Bullough and R. Ghosh (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J., 14, 631638.
  • 20
    Timpmann, K., F. G. Zhang, A. Freiburg and V. Sundström (1993) Detrapping of excitation-energy from the reaction-center in the photosynthetic purple bacterium Rhodospirillum rubrum. Biochim. Biophys. Acta 1183, 185193.
  • 21
    Prince, R. C. and P. L. Dutton (1976) The primary acceptor of bacterial photosynthesis: Its operating midpoint potential? Arch. Biochem. Biophys. 172, 329334.
  • 22
    Blankenship, R. E., D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince and R. T. Sayre (2011) Comparing photosynthetic and potovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805809.