• 1
    Masson, F., T. Laino, I. Tavernelli, U. Rothlisberger and J. Hutter (2008) Computational study of thymine dimer radical anion splitting in the self-repair process of duplex DNA. J. Am. Chem. Soc. 130, 34433450.
  • 2
    Su, D. G. T., J. L.-F. Kao, M. L. Gross and J.-S. A. Taylor (2008) Structure determination of an interstrand-type cis-anti cyclobutane thymine dimer produced in high yield by UVB light in an oligodeoxynucleotide at acidic pH. J. Am. Chem. Soc. 130, 1132811337.
  • 3
    Cadet, J., E. Sage and T. Douki (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571, 317.
  • 4
    Lhiaubet-Vallet, V., M. C. Cuquerella, J. V. Castell, F. Bosca and M. A. Miranda (2007) Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA. J. Phys. Chem. B 111, 74097414.
  • 5
    Kim, S.-T., K. Malhotra, C. A. Smith, J.-S. Taylor and A. Sancar (1993) DNA photolyase repairs the trans–syn cyclobutane thymine dimer. Biochemistry 32, 70657068.
  • 6
    Beukers, R., A. P. M. Eker and P. H. M. Lohman (2008) 50 years thymine dimer. DNA Repair 7, 530543.
  • 7
    Sanders, D. B. and O. Wiest (1999) A model for the enzyme–substrate complex of DNA photolyase and photodamaged DNA. J. Am. Chem. Soc. 121, 51275134.
  • 8
    Lukin, M. and C. d. l. Santos (2006) NMR structures of damaged DNA. Chem. Rev. 106, 607686.
  • 9
    Tachikawa, H. and H. Kawabata (2008) A direct ab initio molecular dynamics (MD) study on the repair reactions of stacked thymine dimer. Chem. Phys. Lett. 462, 321326.
  • 10
    Sancar, A. (1994) Structure and function of DNA photolyase. Biochemistry 33, 29.
  • 11
    Brueckner, F., U. Hennecke, T. Carell and P. Cramer (2007) CPD damage recognition by transcribing RNA polymerase II. Science 315, 859862.
  • 12
    Taylor, J.-S. (1994) Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 27, 7682.
  • 13
    Sinha, R. P. and D.-P. Hader (2002) UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 1, 225236.
  • 14
    Sancar, A. (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 22032237.
  • 15
    Espagne, A., M. Byrdin, A. P. M. Eker and K. Brettel (2009) Very fast product release and catalytic turnover of DNA photolyase. Chem. Biol. Chem. 10, 17771780.
  • 16
    Prytkova, T. R., D. N. Beratan and S. S. Skourtis (2007) Photoselected electron transfer pathways in DNA photolyase. Proc. Natl. Acad. Sci. U.S.A. 104, 802807.
  • 17
    Zheng, X., N. M. Ly and A. A. Stuchebrukhov (2007) Photoactivated excited states of DNA repair photolyase: Dynamical and semiempircal identification. Int. J. Quantum Chem. 107, 31263131.
  • 18
    Dou, Y., S. Xiong, W. Wu, S. Yuan and H. Tang (2010) Photoinduced dissociation of cyclobutane thymine dimer studied by semiclassical dynamics simulation. J. Photochem. Photobiol. B, Biol. 101, 3136.
  • 19
    Rak, J., A. A. Voityuk, M.-E. Michel-Beyerle and N. Rosch (1999) Effect of proton transfer on the anionic and cationic pathways of pyrimidine photodimer cleavage. A computational study. J. Phys. Chem. A 103, 35693574.
  • 20
    Boussicault, F., O. Krüger, M. Robert and U. Wille (2004) Dissociative electron transfer to and from pyrimidine cyclobutane dimers: An electrochemical study. Org. Biomol. Chem. 2, 27422750.
  • 21
    Durbeej, B. and L. A. Eriksson (2000) Thermodynamics of the photoenzymic repair mechanism studied by density functional theory. J. Am. Chem. Soc. 122, 1012610132.
  • 22
    Lu, C.-Y., W.-Z. Lin, W.-F. Wang, Z.-H. Han, Z.-D. Zheng and S.-D. Yao (2000) Kinetic observation of rapid electron transfer between pyrimidine electron adducts and sensitizers of riboflavin, flavin adenine dinucleotide (FAD) and chloranil: A pulse radiolysis study. Radiat. Phys. Chem. 59, 6166.
  • 23
    Shafirovich, V., A. Dourandin and N. E. Geacintov (2001) Proton-coupled electron-transfer reactions at a distance in DNA duplexes: Kinetic deuterium isotope effect. J. Phys. Chem. B 105, 84318435.
  • 24
    Antony, J., D. M. Medvedev and A. A. Stuchebrukhov (2000) Theoretical study of electron transfer between the photolyase catalytic cofactor FADH and DNA thymine dimer. J. Am. Chem. Soc. 122, 10571065.
  • 25
    Kruger, O. and U. Wille (2001) Oxidative cleavage of a cyclobutane pyrimidine dimer by photochemically generated nitrate radicals (NO3˙). Org. Lett. 3, 14551458.
  • 26
    Trzcionka, J., A. Noirot, P.-L. Fabre and N. Chouini-Lalanne (2005) DNA photosensitization by indoprofen—Is DNA damage photoinduced by indoprofen or by its photoproducts? Photochem. Photobiol. Sci. 4, 298303.
  • 27
    Dotse, A. K., E. K. Boone and G. B. Schuster (2000) Remote cis–syn-thymine [2 + 2] dimers are not repaired by radical cations migrating in duplex DNA. J. Am. Chem. Soc. 122, 68256833.
  • 28
    Vicic, D. A., D. T. Odom, M. E. Nunez, D. A. Gianolio, L. W. McLaughlin and J. K. Barton (2000) Oxidative repair of a thymine dimer in DNA from a distance by a covalently linked organic intercalator. J. Am. Chem. Soc. 122, 86038611.
  • 29
    Scannell, M. P., D. J. Fenick, S.-R. Yeh and D. E. Falvey (1997) Model studies of DNA photorepair: Reduction potentials of thymine and cytosine cyclobutane dimers measured by fluorescence quenching. J. Am. Chem. Soc. 119, 19711977.
  • 30
    Pezeshk, A., I. D. Podmore, P. F. Heelis and M. C. R. Symons (1996) Electron addition to thymine dimers and related compounds: A mimic of natural repair. J. Phys. Chem. 100, 1971419718.
  • 31
    Thiagarajan, V., S. Villette, A. Espagne, A. P. M. Eker, K. Brettel and M. Byrdin (2010) DNA repair by photolyase: A novel substrate with low background absorption around 265 nm for transient absorption studies in the UV. Biochemistry 49, 297303.
  • 32
    Nakayama, T., T. Todo, S. Notsu, M. Nakazono and K. Zaitsu (2004) Assay method for Escherichia coli photolyase activity using single-strand cis–syn cyclobutane pyrimidine dimer DNA as substrate. Anal. Biochem. 329, 263268.
  • 33
    Edtbauer, A., K. Russell, L. Feketeova, J. Taubitz, C. Mitterdorfer, S. Denifl, R. A. J. O'Hair, T. D. Mark, P. Scheier and U. Wille (2009) Formation of pyrimidine dimer radical anions in the gas phase. Chem. Commun. 48, 72917293.
  • 34
    Johnson, A. T. and O. Wiest (2007) Structure and dynamics of poly(T) single-strand DNA: Implications toward CPD formation. J. Phys. Chem. B 111, 1439814404.
  • 35
    Saettel, N. J. and O. Wiest (2006) Explicit and implicit solvation of radical ions: The cycloreversion of CPD dimers. Tetrahedron 62, 64906500.
  • 36
    O'Neil, L. L., A. Grossfield and O. Wiest (2007) Base flipping of the thymine dimer in duplex DNA. J. Phys. Chem. B 111, 1184311849.
  • 37
    O'Neil, L. L. and O. Wiest (2008) Structures and energetics of base flipping of the thymine dimer depend on DNA sequence. J. Phys. Chem. B 112, 41134122.
  • 38
    Zhang, W., S. Yuan, A. Li, Y. Dou, J. Zhao and W. Fang (2010) Photoinduced thymine dimerization studied by semiclassical dynamics simulation. J. Phys. Chem. C 114, 55945601.
  • 39
    Aida, M., M. Kaneko and M. Dupuis (1996) An ab initio MO study on the thymine dimer and its radical cation. Int. J. Quantum Chem. 57, 949957.
  • 40
    Aida, M., F. Inoue, M. Kaneko and M. Dupuis (1997) An ab initio MO study on fragmentation reaction mechanism of thymine dimer radical cation. J. Am. Chem. Soc. 119, 1227412279.
  • 41
    Rak, J., A. A. Voityuk and N. Rosch (1998) Splitting of cyclobutane-type uracil dimer cation radicals. Hartree-Fock, MP2 and density functional studies. J. Phys. Chem. A 102, 71687175.
  • 42
    Harrison, C. B., L. L. O'Neil and O. Wiest (2005) Computational studies of DNA photolyase. J. Phys. Chem. A 109, 70017012.
  • 43
    Sancar, G. B., F. W. Smith and A. Sancar (1985) Binding of Escherichia coli DNA photolyase to UV-irradiated DNA. Biochemistry 24, 18491855.
  • 44
    Song, Q.-H., W.-J. Tang, X.-B. Ji, H.-B. Wang and Q.-X. Guo (2007) Do photolyases need to provide considerable activation energy for the splitting of cyclobutane pyrimidine dimer radical anions? Chem. Eur. J. 13, 77627770.
  • 45
    Isely, N., M. Lamare, C. Marshall and M. Barker (2009) Expression of the DNA repair enzyme, photolyase, in developmental tissues and larvae, and in response to ambient UV-R in the antarctic sea urchin Sterechinus neumayeri. Photochem. Photobiol. 85, 11681176.
  • 46
    Xu, L. and G. Zhu (2010) The roles of several residues of Escherichia coli DNA photolyase in the highly efficient photo-repair of cyclobutane pyrimidine dimers. J. Nucl. Acids, 2010, 17.
  • 47
    Weber, S. (2005) Light-driven enzymatic catalysis of DNA repair: A review of recent biophysical studies on photolyase. Biochim. Biophys. Acta 1707, 123.
  • 48
    Weber, S., K. Mobius, G. Richter and C. W. M. Kay (2001) The electronic structure of the flavin cofactor in DNA photolyase. J. Am. Chem. Soc. 123, 37903798.
  • 49
    Hawke, L. G. D., C. Simserides and G. Kalosakas (2009) The π − π* molecular structure of flavin of FADH enzymatic cofactor using the LCAO method. Mat. S. E. B 165, 266269.
  • 50
    Komori, H., R. Masui, S. Kuramitsu, S. Yokoyama, T. Shibata, Y. Inoue and K. Miki (2001) Crystal structure of thermostable DNA photolyase: Pyrimidine-dimer recognition mechanism. Proc. Natl. Acad. Sci. U.S.A. 98, 1356013565.
  • 51
    Fujihashi, M., N. Numoto, Y. Kobayashi, A. Mizushima, M. Tsujimura, A. Nakamura, Y. Kawarabayasi and K. Miki (2007) Crystal structure of archaeal photolyase from sulfolobus tokodaii with two FAD molecules: Implication of a novel light-harvesting cofactor. J. Mol. Biol. 365, 903910.
  • 52
    Li, Y. F., P. F. Heelis and A. Sancar (1991) Active site of DNA photolyase: Tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30, 63226329.
  • 53
    Tachikawa, H. and H. Kawabata (2008) Interaction between thymine dimer and flavin-adenine dinucleotide: A DFT and direct ab initio molecular dynamics study. J. Phys. Chem. B 112, 73157319.
  • 54
    Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford, CT.
  • 55
    Reed, A. E., L. A. Curtiss and F. Weinhold (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899926.
  • 56
    Bader, R. F. W. (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford.
  • 57
    Glendening, E. D., A. E. Reed, J. E. Carpenter and F. Weinhold (1990) NBO Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison.
  • 58
    Biegler König, F. W., J. Schönbohm and D. Bayles (2001) AIM2000—A program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545559.
  • 59
    Breneman, C. M. and K. B. Wiberg (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361373.
  • 60
    Palacio, F., G. Antorrena, M. Castro, R. Burriel, J. M. Rawson, J. N. B. Smith, N. Bricklebank, J. J. Novoa and C. Ritter (1997) High-temperature magnetic ordering in a new organic magnet. Phys. Rev. Lett. 79, 23362339.