• 1
    Scheer, H. (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Edited by B. Grimm, R. J. Porra, W. Rüdiger and H. Scheer), pp. 126. Springer, Dordrecht.
  • 2
    Tamiaki, H. and M. Kunieda (2011) Photochemistry of chlorophylls and their synthetic analogs. In Handbook of Porphyrin Science, Vol. 11 (Edited by K. M. Kadish, K. M. Smith and R. Guilard), pp. 223290. World Scientific, Singapore.
  • 3
    Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury and N. A. Welschmeyer (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340343.
  • 4
    Chisholm, S. W., S. L. Frankel, R. Goericke, R. J. Olson, B. Palenik, J. B. Waterbury, L. West-Johnsrud and E. R. Zettler (1992) Prochlorococcus marinus nov. gen. nov. sp.: An oxygenic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297300.
  • 5
    Goericke, R. and D. J. Repeta (1992) The pigments of Prochlorococcus marinus: The presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol. Oceanogr. 37, 425433.
  • 6
    Miyashita, H., H. Ikemoto, N. Kurano, K. Adachi, M. Chihara and S. Miyachi (1996) Chlorophyll d as a major pigment. Nature 383, 402.
  • 7
    Murakami, A., H. Miyashita, M. Iseki, K. Adachi and M. Mimuro (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303, 1633.
  • 8
    Klimov, V. V., A. V. Klevanik, V. A. Shuvalov and A. A. Krasnovsky (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett. 82, 183186.
  • 9
    Klimov, V. V., V. A. Shuvalov and U. Heber (1985) Photoreduction of pheophytin as a result of electron donation from the water-splitting system to Photosystem II reaction centers. Biochim. Biophys. Acta 809, 345350.
  • 10
    Hastings, G., J. R. Durrant, J. Barber, G. Porter and D. R. Klug (1992) Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry 31, 76387647.
  • 11
    Loll, B., J. Kern, W. Saenger, A. Zouni and J. Biesiadka (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 10401044.
  • 12
    Ohashi, S., T. Iemura, M. R. Islam, Y. Kuroiwa, Y. Kato, M. Ohnishi-Kameyama, T. Watanabe, H. Koike and M. Kobayashi (2009) Divinyl-chlorophyll a′ and divinyl-pheophytin a as key components in a slr1923-inactivated mutant of Synechocystis 6803. Phycologia 48, 98.
  • 13
    Benz, J. and W. Rüdiger (1981) Chlorophyll biosynthesis: Various chlorophyllides as exogenous substrates for chlorophyll synthase. Z. Naturforsch. 36c, 5157.
  • 14
    Rüdiger, W. (2000) The last steps of chlorophyll synthesis. In Porphyrin Handbook, Vol. 13 (Edited by K. M. Kadish, K. M. Smith and R. Guilard), pp. 71108. Academic Press, San Diego.
  • 15
    Kräutler, B. and P. Matile (1999) Solving the riddle of chlorophyll breakdown. Acc. Chem. Res. 32, 3543.
  • 16
    Hörtensteiner, S. (2006) Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57, 5577.
  • 17
    Kräutler, B. (2008) Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit. Photochem. Photobiol. Sci. 7, 11141120.
  • 18
    Hörtensteiner, S. and B. Kräutler (2011) Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977988.
  • 19
    Schelbert, S., S. Aubry, B. Burla, B. Agne, F. Kessler, K. Krupinska and S. Hörtensteiner (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767785.
  • 20
    Büchert, A. M., P. M. Civello and G. A. Martínez (2011) Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 168, 337343.
  • 21
    Mackinney, G. and M. A. Joslyn (1940) The conversion of chlorophyll to pheophytin. J. Am. Chem. Soc. 62, 231232.
  • 22
    Mackinney, G. and M. A. Joslyn (1941) Chlorophyll-pheophytin: Temperature coefficient of the rate of pheophytin formation. J. Am. Chem. Soc. 63, 25302531.
  • 23
    Schanderl, S. H., C. O. Chichester and G. L. Marsh (1962) Degradation of chlorophyll and several derivatives in acid solution. J. Org. Chem. 27, 38653868.
  • 24
    Rosoff, M. and C. Aron (1965) Reaction kinetics of monomolecular films of chlorophyll a on aqueous substrates. J. Phys. Chem. 69, 2124.
  • 25
    Berezin, B. D., A. N. Drobysheva and L. P. Karmanova (1976) Kinetics and mechanism of the dissociation of chlorophyll and its metalloanalogues in proton-donating media. Russ. J. Phys. Chem. 50, 720723.
  • 26
    Mazaki, H. and T. Watanabe (1988) Pheophytinization of chlorophyll a and chlorophyll a′ in aqueous acetone. Bull. Chem. Soc. Jpn. 61, 29692970.
  • 27
    Mazaki, H., T. Watanabe, T. Takahashi, A. Struck and H. Scheer (1992) Pheophytinization of eight chlorophyll derivatives in aqueous acetone. Bull. Chem. Soc. Jpn. 65, 32123214.
  • 28
    Kobayashi, M., M. Yamamura, M. Akiyama, H. Kise, K. Inoue, M. Hara, N. Wakao, K. Yahara and T. Watanabe (1998) Acid resistance of Zn-bacteriochlorophyll a from an acidophilic bacterium Acidiphilum rubrum. Anal. Sci. 14, 11491152.
  • 29
    Saga, Y., Y. Hirai and H. Tamiaki (2007) Kinetic analysis of demetalation of bacteriochlorophyll c and e homologs purified from green sulfur photosynthetic bacteria. FEBS Lett. 581, 18471850.
  • 30
    Hirai, Y., H. Tamiaki, S. Kashimura and Y. Saga (2009) Physicochemical studies of demetalation of light-harvesting bacteriochlorophyll isomers purified from green sulfur photosynthetic bacteria. Photochem. Photobiol. 85, 11401146.
  • 31
    Hirai, Y., H. Tamiaki, S. Kashimura and Y. Saga (2009) Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: Effect of the formyl groups conjugated directly to the chlorin π-macrocycle. Photochem. Photobiol. Sci. 8, 17011707.
  • 32
    Saga, Y., S. Hojo and Y. Hirai (2010) Comparison of demetalation properties between zinc chlorin and zinc porphyrin derivatives: Effect of macrocyclic structures. Bioorg. Med. Chem. 10, 56975700.
  • 33
    Hirai, Y., S. Kashimura and Y. Saga (2011) Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions. Photochem. Photobiol. 87, 302307.
  • 34
    Hirai, Y., S. Sasaki, H. Tamiaki, S. Kashimura and Y. Saga (2011) Substitution effects in the A- and B-rings of the chlorin macrocycle on demetalation properties of zinc chlorophyll derivatives. J. Phys. Chem. B 115, 32403244.
  • 35
    Saga, Y., R. Miura, K. Sadaoka and Y. Hirai (2011) Kinetic analysis of demetalation of synthetic zinc cyclic tetrapyrroles possessing an acetyl group at the 3-position: effects of tetrapyrrole structures and peripheral substitution. J. Phys. Chem. B 115, 1175711762.
  • 36
    Wakao, N., N. Yokoi, N. Isoyama, A. Hiraishi, K. Shimada, M. Kobayashi, H. Kise, M. Iwaki, S. Itoh, S. Takaichi and Y. Sakurai (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol. 37, 889893.
  • 37
    Kobayashi, M., M. Akiyama, H. Kise and T. Watanabe (2006) Unusual tetrapyrrole pigments of photosynthetic antenna and reaction centers: specially-tailored chlorophylls. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Edited by B. Grimm, R. J. Porra, W. Rüdiger and H. Scheer), pp. 5566. Springer, Dordrecht.
  • 38
    Mizoguchi, T., C. Nagai, M. Kunieda, Y. Kimura, A. Okamura and H. Tamiaki (2009) Stereochemical determination of the unique acrylate moiety at the 17-position in chlorophylls-c from a diatom Chaetoseros calcitrans and its effect upon electronic absorption properties. Org. Biomol. Chem. 7, 21202126.
  • 39
    Tamiaki, H., D. Takekoshi and T. Mizoguchi (2011) Reduction of vinyl groups in naturally occurring chlorophylls-a. Bioorg. Med. Chem. 19, 5257.
  • 40
    Mizoguchi, T., A. Shoji, M. Kunieda, H. Miyashita, T. Tsuchiya, M. Mimuro and H. Tamiaki (2006) Stereochemical determination of chlorophyll-d molecule from Acaryochloris marina and its modification to a self-aggregative chlorophyll as a model of green photosynthetic bacterial antennae. Photochem. Photobiol. Sci. 5, 291299.
  • 41
    Inamoto, N. and S. Masuda (1982) Revised method for calculation of group electronegativities. Chem. Lett. 7, 10031006.