Developing Children's Understanding of Fractions: An Intervention Study

Authors

  • Florence Gabriel,

    Corresponding author
    1. Laboratoire Cognition, Langage et Développement, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles
    2. Department of Experimental Psychology, Centre for Neuroscience in Education, University of Cambridge
    Search for more papers by this author
  • Frédéric Coché,

    1. Service des Sciences de l’Education, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles
    Search for more papers by this author
  • Dénes Szucs,

    1. Department of Experimental Psychology, Centre for Neuroscience in Education, University of Cambridge
    Search for more papers by this author
  • Vincent Carette,

    1. Service des Sciences de l’Education, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles
    Search for more papers by this author
  • Bernard Rey,

    1. Service des Sciences de l’Education, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles
    Search for more papers by this author
  • Alain Content

    Corresponding author
    1. Laboratoire Cognition, Langage et Développement, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles
    Search for more papers by this author

Florence Gabriel, Laboratoire Cognition, Langage et Développement, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles, Ixelles, Belgium; e-mail: fcg25@cam.ac.uk, Dénes Szucs, Department of Experimental Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, UK; e-mail: ds377@cam.ac.uk, or Alain Content, Laboratoire Cognition, Langage et Développement, Faculté des Sciences Psychologiques et de l’Education, Université Libre de Bruxelles, Ixelles, Belgium; e-mail: alain.content@ulb.ac.be

Abstract

Fractions constitute a stumbling block in mathematics education. To improve children's understanding of fractions, we designed an intervention based on learning-by-doing activities, which focused on the representation of the magnitude of fractions. Participants were 292 Grade 4 and 5 children. Half of the classes received experimental instruction, while the other half pursued their usual lessons. For 10 weeks, they played five different games using cards representing fractions (e.g., Memory and Blackjack). Wooden disks helped them represent and manipulate fractions while playing games. Our results showed an improvement in the conceptual understanding of fractions. The findings confirmed that the usual practice in teaching fractions is largely based on procedural knowledge and provides only minimal opportunities for children to conceptualize the meaning and magnitude of fractional notations. Furthermore, our results demonstrate that a short intervention inducing children to manipulate, compare, and evaluate fractions improves their ability to associate fractional notations with numerical magnitude.

Ancillary