SEARCH

SEARCH BY CITATION

References

  • Alexiadis, M.C., Dokopoulos, P.S. & Sahsamanoglou, H.S. (1999). Wind speed and power forecasting based on spatial correlation models. IEEE Trans. Energy Convers., 14, 836842.
  • ANL/DIS (2009). Wind power forecasting: state-of-the-art 2009, available at: http://www.dis.anl.gov/pubs/65613.pdf.
  • Armstrong, S. (1985). Long-range Forecasting. New York: Wiley.
  • AWEA. (2009). U.S. Wind industry annual market report year ending 2009, available at: http://www.awea.org/.
  • Azzalini, A. & Genton, M.G. (2008). Robust likelihood methods based on the skew-t and related distributions. Int. Statist. Rev., 76, 106129.
  • Bofinger, S., Luig, A. & Beyer, H.G. (2002). Qualification of wind power forecasts. Poster P-GWP093 on the Global Windpower Conference and Exhibition, Paris , France , pp. 25.
  • Bossanyi, E.A. (1985). Short-term wind prediction using Kalman filters. Wind Eng., 9, 18.
  • Bossavy, A., Girard, R. & Kariniotakis, G. (2010). Forecasting uncertainty related to ramps of wind power production, available at http://www.cep.cma.fr/st/rg/page4/files/ForecastingRampUncertainty.pdf.
  • Brown, B.G., Katz, R.W. & Murphy, A.H. (1984). Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteor., 23, 11841195.
  • Cadenas, E. & Rivera, W. (2009). Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew. Energy, 34, 274278.
  • Carta, J.A. & Ramírez, P. (2007). Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago. Energy Convers. Manag., 48, 281291.
  • Carta, J.A., Ramírez, P. & Velazquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands. Renew. Sustain. Energy Rev., 13, 933955.
  • Carta, J.A., Ramírez, P. & Velazquez, S. (2009). Influence of the level of fit a density probability function to wind-speed data on the WECS mean power output estimation. Energy Convers. Manag., 49, 26472655.
  • Chen, Z. & Yang, Y. (2004). Assessing Forecasting Accuracy Measures. Preprint Series. Department of Economics, Iowa State University .
  • CREIA (2010). 2010 China wind power outlook, available at: http://www.greenpeace.org/raw/content/eastasia/press/reports/wind-power-report-english-2010.pdf.
  • Crochet, P. (2004). Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteor. Appl., 11, 173187.
  • Damousis, I.G., Alexiadis, M.C., Theocharis, J.B. & Dokopoulos, P. (2004). A fuzzy model for wind speed prediction and power generation in wind farms using spatial correlation. IEEE Trans. Energy Convers., 19, 352361.
  • Damousis, I.G. & Dokopoulos, P. (2001). A fuzzy model expert system for the forecasting of wind speed and power generation in wind farms. In Proceedings of the IEEE International Conference on Power Industry Computer Applications PICA, vol. 1, pp. 6369.
  • Dell’Aquila, R. & Ronchetti, E. (2004). Robust tests of predictive accuracy. Metron, 62, 161184.
  • de Luna, X. & Genton, M.G. (2005). Predictive spatio-temporal models for spatially sparse environmental data. Statist. Sinica, 15, 547568.
  • Diebold, F.X. & Mariano, R.S. (1995). Comparing predictive accuracy. J. Bus. Econom. Statist., 13, 253263.
  • DOE (2010). Large-scale offshore wind power in the United States, available at: http://www.nrel.gov/wind/pdfs/40745.pdf.
  • European Union (2008). Climate change: commission welcomes final adoption of Europe’s climate and energy package. Press Release, EU, December 17, 2008, available at: http://europa.eu/rapid/pressReleasesAction.do?reference=IP/08/1998.
  • Fildes, R., Nikolopoulos, K., Crone, S.F. & Syntetos, A.A. (2008). Forecasting and operational research: A Review. J. Oper. Res. Soc., 59, 11501172.
  • Flores, B.E. (1986). A pragmatic view of accuracy measurement in forecasting. Omega (Oxford), 14, 9398.
  • Fukuda, H., Tamaki, S., Nakamura, M., Nagai, H., Shijo, F., Asato, S. & Onaga, K. (2001). The development of wind velocity prediction method based on a data-mining type autoregressive model. In Proceedings of the European Wind Energy Conference, Copenhagen , Denmark , pp. 741744.
  • Geerts, H. (1984). Short range prediction of wind speeds: a system-theoretic approach. In Proceedings of European wind energy conference, Hamburg , Germany , pp. 594599.
  • Genton, M.G. & Hering, A.S. (2007). Blowing in the Wind. Significance, 4, 1114.
  • Giacomini, R. & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74, 15451578.
  • Giebel, G. (2001). On the benefits of distributed generation of wind energy in Europe. Ph.D. thesis from the Carl von Ossietzky Universität Oldenburg, Düsseldorf.
  • Giebel, G., Brownsword, R. & Kariniotakis, G. (2003). The state of the art in short term prediction of wind power: a literature overview. ANEMOS Project .
  • Gneiting, T. (2008). Editorial: probabilistic forecasting. J. Roy. Statist. Soc. Ser. A, 171, 319321.
  • Gneiting, T. (2011a). Making and evaluating point forecasts. J. Amer. Statist. Assoc., 106, 746762.
  • Gneiting, T. (2011b). Quantiles as optimal point forecasts. Int. J. Forecast., 27, 197207.
  • Gneiting, T., Balabdaoui, F. & Raftery, A.E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Statist. Soc. Ser. B, 69, 243268.
  • Gneiting, T., Larson, K., Westrick, K., Genton, M.G. & Aldrich, E. (2006). Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method. J. Amer. Statist. Assoc., 101, 968979.
  • Gneiting, T. & Raftery, A.E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc., 102, 359378.
  • Gneiting, T., Stanberry, L.I., Grimit, E.P., Held, L. & Johnson, N.A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds. Test, 17, 211235.
  • Hering, A.S. & Genton, M.G. (2010). Powering up with space-time wind forecasting. J. Amer. Statist. Assoc., 105, 92104.
  • Hering, A.S. & Genton, M.G. (2011). Comparing spatial predictions. Technometrics, 53, 414425.
  • Jeon, J. & Taylor, J. (2012). Using conditional kernel density estimation for wind power density forecasting. J. Amer. Statist. Assoc., 107 .
  • Kamal, L. & Jafri, Y.Z. (1997). Time series models to simulate and forecast hourly average wind speed in Quetta. Solar Energy, 61, 2332.
  • Kamath, C. (2010). Understanding wind ramp events through analysis of historical data, available at: https://computation.llnl.gov/casc/StarSapphire/pubs/LLNL-CONF-416432.pdf.
  • Lange, M. & Heinemann, D. (2002). Accuracy of short term wind power predictions depending on meteorological conditions. Poster P-GWP091 on the Global Wind power Conference and Exhibition, Paris , France , 2–5 April 2002.
  • Lange, M. & Waldl, H.P. (2001). Assessing the uncertainty of wind power predictions with regard to specific weather situations. In Proceedings of the European Wind Energy Conference, Copenhagen , Denmark , 2--6 June 2001, pp. 695698. (Note: accessible by following the link provided from their university homepage.)
  • Lau, A. & McSharry, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. Ann. Appl. Statist., 4, 13111341.
  • Louka, P., Galanisa, G., Siebertd, N., Kariniotakisd, G., Katsafadosa, P., Pytharoulisa, I. & Kallosa, G. (2008). Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Indust. Aerodyn., 96, 23482362.
  • Luig, A., Bofinger, S. & Beyer, H.G. (2001). Analysis of confidence intervals for the prediction of regional wind power output. In Proceedings of the European Wind Energy Conference, Copenhagen , Denmark , 2–6 June 2001, pp. 725728.
  • Malmberg, A., Holst, U. & Holst, J. (2005). Forecasting near-surface ocean winds with Kalman filter techniques. Ocean Eng., 32, 273291.
  • Marquis, M., Wilczak, J., Ahlstrom, M., Sharp, J., Stern, A., Smith, J.C. & Calvert, S. (2011). Forecasting the wind to reach significant penetration levels of wind energy. Bull. Amer. Meteorol. Soc., 92, 11591171.
  • Meese, R.A. & Rogoff, K. (1988). Was it Real? The exchange rate—interest differential relation over the modern floating-rate period. J. Finance, 43, 933948.
  • Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J. & Conzelmann, G. (2009). Wind power forecasting: state-of-the-art 2009, available at: http://anemos.cma.fr/download/ANEMOS_D1.1_StateOfTheArt_v1.1.pdf.
  • Nielsen, T.S., Joensen, A., Madsen, H., Landberg, L. & Giebel, G. (1998). A new reference model for wind power forecasting. Wind Energy, 1, 2934.
    Direct Link:
  • Pinson, P., Chevallier, C. & Kariniotakis, G.N. (2007). Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. Power Systems, 22, 11481156.
  • Pinson, P. & Hagedorn, R. (2012). Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations. Meteorol. Appl., DOI: 10.1002/met.283.
  • Pinson, P. & Madsen, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. J. Forecast., DOI: 10.1002/for.1194.
  • Ramírez, P. & Carta, J.A. (2005). Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Convers. Manag., 46, 24192438.
  • Rugbjerg, M., Sorensen, O.R. & Jacobsen, V. (2006). Wave forecasting for offshore wind farms. 9th International Workshop on Wave Hindcasting and Forecasting, Victoria , B.C. Canada , September 24–29, 2006.
  • Schlink, U. & Tetzlaff, G. (1998). Wind speed forecasting from 1 to 30 minutes. Theor. Appl. Climatol., 60, 191198.
  • Sfetsos, A. (2000). A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energy, 21, 2335.
  • Sfetsos, A. (2002). A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy, 27, 163174.
  • Sloughter, J.M., Gneiting, T. & Raftery, A.E. (2010). Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Amer. Statist. Assoc., 105, 2535.
  • Tambke, J. (2004). Forecasting offshore wind speeds above the North Sea. Wind Energy, 8, 36.
  • Tambke, J., Lange, M., Focken, U. & Heineman, D. (2003). Previento meets horns rev short-term wind power prediction-adaptation to offshore sites. In Proceedings of the European Wind Energy Conference EWEC in Madrid, Spain June 2003.
  • Tantareanu, C. (1992). Wind prediction in short-term: a first step for a better wind turbine control. Nordvestjysk Folkecenter for Vedvarende Energi, October.
  • Tsay, R.S. (2010). Analysis of Financial Time Series, 3rd ed. Hoboken , NJ : Wiley.
  • Thorarinsdottir, T.L. & Gneiting, T. (2010). Probabilistic forecasts of wind speed: ensemble model output statistics using heteroskedastic censored regression. J. Roy. Statist. Soc. Ser. A, 173, 371388.
  • Wikle, C.K., & Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86, 815829.
  • WWEA (2009). World wind energy report 2009, available at: http://www.wwindea.org/home/images/stories/worldwindenergyreport2009_s.pdf.
  • Xie, L., Carvalho, P.M.S., Ferreira, L.A.F.M., Liu, J., Krogh, B., Popli, N. & Ilić, M.D. (2011). Wind energy integration in power systems: operational challenges and possible solutions. In Proceedings of IEEE: Special Issue on Network Systems Engineering for Meeting the Energy and Environment Dream (Invited), vol. 99, pp. 214232.