SEARCH

SEARCH BY CITATION

References

  • Aalen, O., Borgan, Ø. & Gjessing, H.K. (2008). Survival and Event History Analysis: A Process Point of View . New York : Springer.
  • Abate, J. & Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. , 10(1), 588.
  • Andersen, P.K., Borgan, Ø., Gill, R.D. & Keiding, N. (1993). Statistical Models Based on Counting Processes . New York : Springer.
  • Andersen, P.K. & Keiding, N. (2002). Multi-state models for event history analysis. Stat. Methods Med. Res. , 11, 91115.
  • Bartlett, M.S. (1955). An Introduction to Stochastic Processes, with Special Reference to Methods and Applications . Cambridge , UK : Cambridge University Press.
  • Billingsley, P. (1961). Statistical Inference for Markov Processes . Chicago , IL : University of Chicago Press.
  • Billingsley, P. (1979). Probability and Measure . New York : John Wiley & Sons.
  • Bogdanoff, J.L. & Kozin, F. (1985). Probabilistic Models of Cumulative Damage . New York : Wiley Interscience.
  • Broyles, J.R. & Montgomery, D.C. (2010). A statistical Markov chain approximation of transient hospital inpatient inventory. Eur. J. Oper. Res , 207(3), 16451657.
  • Butler, R.W. (2001). First passage distributions in semi-Markov processes and their saddlepoint approximation. In Data Analysis from Statistical Foundations , Ed. A.K. Saleh, pp. 347368. Hauppauge, NY: Nova Science Publishers.
  • Butler, R.W. & Bronson, D.A. (2002). Bootstrapping survival times in stochastic systems by using saddlepoint approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. , 64(1), 3149.
  • Casella, G. & Berger, R.L. (2002). Statistical Inference , 2nd ed. Pacific Grove , CA : Duxbury.
  • Çinlar, E. (1975). Introduction to Stochastic Processes . Englewood Cliffs , NJ : Prentice-Hall.
  • Cheng, R.C.H. (1995). Bootstrap methods in computer simulation experiments. In Proceedings of the 1995 Winter Simulation Conference , Eds. C. Alexopoulos, K. Wang, W.R. Lilegdon & D. Goldsman, pp. 171177. Washington , DC : IEEE Computer Society.
  • Collins, D.H. (2009). Nonparametric Estimation of First Passage Time Distributions in Flowgraph Models , PhD dissertation. Albuquerque , NM : University of New Mexico.
  • Collins, D.H. & Huzurbazar, A.V. (2008). System reliability and safety assessment using nonparametric flowgraph models. J. Risk Reliab. , 222, 667674.
  • Cox, D.R. & Miller, H.D. (1968). The Theory of Stochastic Processes . London : Methuen & Co.
  • Crowder, M. (2001). Classical Competing Risks . Boca Raton , FL : Chapman & Hall/CRC.
  • Csenki, A. (2009). Towards a unified view of finite automata and semi-Markov flowgraph models. Int. J. Gen. Syst. , 38(6), 643657.
  • Csörgő, S. (1982). The empirical moment generating function. In Nonparametric Statistical Inference , Eds. B.V. Gnedenko, M.L. Puri & I. Vincze. Amsterdam: North-Holland Publishing Company.
  • Csörgő, S. & Teugels, J.L. (1990). Empirical Laplace transform and approximation of compound distributions. J. Appl. Probab. , 27, 88110.
  • Daniels, H.E. (1954). Saddlepoint approximations in statistics. Ann. Math. Stat. , 25, 631650.
  • Daniels, H.E. (1980). Exact saddlepoint approximations. Biometrika , 67(1), 5963.
  • Daniels, H.E. (1982). The saddlepoint approximation for a general birth process. J. Appl. Probab. , 19, 2028.
  • David, H.A. & Moeschberger, M.L. (1978). The Theory of Competing Risks . New York : Macmillan.
  • Davies, B. & Martin, B. (1979). Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. , 33, 132.
  • Davison, A.C. & Hinkley, D.V. (1988). Saddlepoint approximations in resampling methods. Biometrika 73(3), 417431.
  • Davison, A.C. & Hinkley, D.V. (1997). Bootstrap Methods and Their Application . Cambridge : Cambridge University Press.
  • Efron, B. (1967). The two sample problem with censored data. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , Eds. L.M. Le Cam & J. Neyman, pp. 831853. Berkeley , CA : University of California Press.
  • Elkins, D.A. & Wortman, M.A. (2001). On numerical solution of the Markov renewal equation: tight upper and lower kernel bounds. Method. Comput. Appl. Probab. , 3, 239253.
  • Epstein, C.L. & Schotland, J. (2008). The bad truth about Laplace’s transform. SIAM Rev. , 50(3), 504520.
  • Feuerverger, A. (1989). On the empirical saddlepoint approximation. Biometrika , 76(3), 457464.
  • Feuerverger, A. & Mureika, R.A. (1977). The empirical characteristic function and its applications. Ann. Stat. , 5(1), 8897.
  • Field, C. & Ronchetti, E. (1990). Small Sample Asymptotics , IMS Lecture Notes-Monograph Series No. 13, Hayward , CA : Institute of Mathematical Statistics.
  • Fienberg, S.E. & Holland, P.W. (1973). Estimation of multinomial cell probabilities. J. Amer. Statist. Assoc. , 68(343), 683691.
  • Fleming, K.N. (2004). Markov models for evaluating risk-informed in-service inspection strategies for nuclear power plant piping systems. Reliab. Eng. Syst. Safety , 83, 2745.
  • Gijbels, I., Pope, A. & Wand, M.P. (1999). Understanding exponential smoothing via kernel regression. J. R. Stat. Soc. Ser. B Stat. Methodol. , 61, 950.
  • Gilat, A. (2010). MATLAB: an Introduction with Applications , 4th ed. Hoboken , NJ : John Wiley & Sons.
  • Gill, R.D. (1980a). Censoring and Stochastic Integrals . Mathematisch Centrum , Amsterdam : Mathematical Centre Tracts 124.
  • Gill, R.D. (1980b). Nonparametric estimation based on censored observations of a Markov renewal process. Zeitschrift für Wahrscheinlickeitstheorie und Verwandte Gebeite , 53, 97116.
  • Guihenneuc-Jouyaux, C., Richardson, S. & Longini, I.M. (2000). Modeling markers of disease progression by a hidden Markov process: application to characterizing CD4 cell decline. Biometrics , 56, 733741.
  • Gusella, V. (1998). Safety estimation method for structures with cumulative damage. J. Eng. Mech. , 124, 12001209.
  • Hamada, M.S., Wilson, A.G., Reese, C.S. & Martz, H.F. (2008). Bayesian Reliability . New York : Springer.
  • Hougaard, P. (1999). Multi-state models: a review. Lifetime Data Anal. , 5, 239264.
  • Huzurbazar, A.V. (2000). Modeling and analysis of engineering systems data using flowgraph models. Technometrics , 42, 300306.
  • Huzurbazar, A.V. (2005). Flowgraph Models for Multistate Time-to-Event Data . Hoboken , NJ : Wiley Interscience.
  • Huzurbazar, A.V. & Williams, B.J. (2005). Flowgraph models for complex multistate system reliability. In Modern Statistical and Mathematical Methods in Reliability , Eds. A. Wilson, N. Limnios, S. Keller-McNulty & Y. Armijo. Singapore , Singapore : World Scientific.
  • Janssen, J. & Manca, R. (2006). Applied Semi-Markov Processes . New York : Springer.
  • Jarrow, R.A., Lando, D. & Turnbull, S.M. (1997). A Markov model for the term structure of credit risk spreads. The Review of Financial Studies , 10(2), 481523.
  • Kaplan, E.L. & Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. , 53(282), 457481.
  • Karlin, S. & Taylor, H.M. (1975). A First Course in Stochastic Processes , 2nd ed. London : Academic Press.
  • Karlin, S. & Taylor, H.M. (1981). A Second Course in Stochastic Processes , 2nd ed. London : Academic Press.
  • Kattan, M.W., Cowen, M.E. & Miles, B.J. (1997). A decision analysis for treatment of clinically localized prostate cancer. J. Gen. Intern. Med. , 12(5), 299305.
  • Kemeny, J.G. & Snell, J.L. (1976). Finite Markov Chains . New York : Springer-Verlag.
  • Klein, J.P. & Moeschberger, M.L. (2003). Survival Analysis: Techniques for Censored and Truncated Data , 2nd ed. New York : Springer-Verlag.
  • Kleinrock, L. (1975). Queueing Systems Volume I: Theory . New York : John Wiley & Sons.
  • Kulkarni, V.G. (1996). Modeling and Analysis of Stochastic Systems . Boca Raton , FL : Chapman & Hall/CRC.
  • Law, A.M. & Kelton, D.W. (2000). Simulation Modeling and Analysis , 3rd ed. Boston : McGraw Hill.
  • Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data . New York : John Wiley & Sons.
  • Limnios, N. & Oprişan, G. (2001). Semi-Markov Processes and Reliability . Boston : Birkhäuser.
  • Lorens, C.S. (1964). Flowgraphs for the Modeling and Analysis of Linear Systems . New York : McGraw-Hill.
  • Mann, N.R., Schafer, R.E. & Singpurwalla, N.D. (1974). Methods for Statistical Analysis of Reliability and Life Data . New York : John Wiley & Sons.
  • Mason, S.J. (1953). Feedback theory—some properties of signal flow graphs. Proc. Inst. Radio Eng. , 41, 11441156.
  • Mason, S.J. (1956). Feedback theory—further properties of signal flow graphs. Proc. Inst. Radio Eng. , 44, 920926.
  • Mazumdar, M. (1980). Component testing procedure for a series system with redundant subsystems. Technometrics , 22, 2327.
  • McCabe, T.J. & Butler, C.W. (1989). Design complexity measurement and testing. Commun. ACM , 32(12), 14151425.
  • Meyer, D.D. (2000). Matrix Analysis and Applied Linear Algebra . Philadelphia , PA : SIAM.
  • Moeschberger, M.L. & Klein, J.P. (1985). A comparison of several methods of estimating the survival function when there is extreme right censoring. Biometrics , 41(1), 253259.
  • Moore, E.H. & Pyke, R. (1968). Estimation of the transition distributions of a Markov renewal process. Ann. Inst. Statist. Math. , 20, 411424.
  • Natvig, B. (2011). Multistate Systems Reliability Theory with Applications . Chichester , UK : John Wiley & Sons.
  • Nicola, V.F., Shahabuddin, P. & Nakayama, M.K. (2001). Techniques for fast simulaion of models of highly dependable systems. IEEE Trans. Reliab. , 50, 246264.
  • Ouhbi, B. & Limnios, N. (2003). Nonparametric reliability estimation of semi-Markov proccesses. J. Stat. Infer. Plan. , 109, 155165.
  • Parzen, E. (1962). Stochastic Processes . San Francisco : Holden Day.
  • Pyke, R. (1961a). Markov renewal processes: definitions and preliminary results. Ann. Math. Stat. , 32, 12311242.
  • Pyke, R. (1961b). Markov renewal processes with finitely many states. Ann. Math. Stat. , 32, 12431259.
  • R Development Core Team (2008). R: A Language and Environment for Statistical Computing . Vienna , Austria : R Foundation for Statistical Computing.
  • Ross, S.M. (1992). Applied Probability Models with Optimization Applications . New York : Dover Publications.
  • Ross, S.M. (1996). Stochastic Processes , 2nd ed. New York : John Wiley & Sons.
  • Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis . Boca Raton , FL : Chapman & Hall/CRC.
  • Simonoff, J.S. (1996). Smoothing Methods in Statistics . New York : Springer.
  • Sittler, R.W. (1956). Systems analysis of discrete Markov processes. IRE Trans. Circuit Theory , 3(4), 257266.
  • Stute, W. & Wang, J.-L. (1993). The strong law under random censorship. Ann. Stat. , 21, 15911607.
  • Therneau, T.M. & Grambsch, P.M. (2000). Modeling Survival Data: Extending the Cox Model . New York : Springer.
  • Tortorella, M. (2005). Numerical solutions of renewal-type equations. INFORMS J. Comput. , 17(1), 6674.
  • Vere-Jones, D. (1970). Stochastic models for earthquake occurrence. J. R. Stat. Soc. B , 32, 162.
  • Warr, R.L. (2012). Numerical approximation of probability mass functions via the inverse discrete Fourier transform. Technical Report LA-UR-12-24885. Los Alamos, NM: Los Alamos National Laboratory.
  • Warr, R.L. & Collins, D.H. (2011). A comprehensive method for solving general finite-state semi-Markov processes. Technical Report LA-UR-11-01596 . Los Alamos , NM : Los Alamos National Laboratory.
  • Williams, B.J. & Huzurbazar, A.V. (2006). Posterior sampling with constructed likelihood functions: an application to flowgraph models. Appl. Stoch. Models Bus. Ind. , 22(2), 127137.
  • Wolfram, S. (2003). The Mathematica Book , 5th ed. Champaign , IL : Wolfram Media/Cambridge University Press.
  • Yau, C.L. & Huzurbazar, A.V. (2002). Analysis of censored and incomplete survival data using flowgraph models. Stat. Med. , 21, 37273743.
  • Zio, E. (2009). Computational Methods for Reliability and Risk Analysis . Singapore : World Scientific.