SEARCH

SEARCH BY CITATION

References

  • Adriano, D.C. (2001) Trace Elements in the Terrestrial Environment: Biogeochemistry, Bioavailability and Risk of Metals. New York, NY, USA: Springer-Verlag.
  • Belkin, S. (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6: 206212.
  • Ben-Israel, O., Ben-Israel, H., and Ulizur, S. (1998) Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl Environ Microbiol 64: 43464352.
  • Billard, P., and DuBow, M.S. (1998) Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem 31: 114.
  • Biran, I., Babai, R., Levcov, K., Rishpon, J., and Ron, E.Z. (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2: 285290.
  • Bontidean, I., Lloyd, J.R., Hobman, J.L., Wilson, J.R., Csoregi, E., Mattiasson, B., and Brown, N.L. (2000) Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg Biochem 79: 225229.
  • Bontidean, I., Mortari, A., Leth, S., Brown, N.L., Karlson, U., Larsen, M.M., et al. (2004) Biosensors for detection of mercury in contaminated soils. Environ Pollut 131: 255262.
  • Boyanapalli, R., Bullerjahn, G.S., Pohl, C., Croot, P.L., Boyd, P.W., McKay, R., and Michael, L. (2007) Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 73: 10191024.
  • Brandt, K.K., Holm, P.E., and Nybroe, O. (2006) Bioavailability and toxicity of soil particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensors strain. Environ Toxicol Chem 25: 17381741.
  • Bronstein, I., Fortin, J., Stanley, P.E., Stewart, G.S.A.B., and Kricka, L.J. (1994) Chemiluminescent and bioluminescent reporter gene assays. Anal Biochem 219: 169181.
  • Brunis, M.R., Kapil, S., and Oehme, W.F. (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45: 198207.
  • Bulich, A.A., and Isenberg, D.L. (1981) Use of the luminescent bacterial system for rapid assessment of aquatic toxicity. ISA Trans 20: 2933.
  • Cai, J., and Dubow, S.M. (1997) Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8: 105111.
  • Casteel, S.W., Weis, C.P., Henningsen, G.M., and Brattin, W.J. (2006) Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ Health Perspect 114: 11621171.
  • Chojnacka, K., Chojnacki, A., Gorecka, H., and Gorecki, H. (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337: 175182.
  • Corbisier, P., Mergeay, M., and Diels, L. (1998) Fused genes and their use for determining the presence of metals or of xenobiotic compounds. US patent 5786162.
  • Corbisier, P., Van Der Lelie, D., Borremans, B., Provoost, A., Lorenzo, V., Brown, N.L., et al. (1999) Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387: 235244.
  • Darling, T.R.C., and Vernon, T. (2005) Lead bioaccumulation in earthworms, Lumbricus terresris, from exposure to lead compounds of different solubility. Sci Total Environ 346: 7080.
  • Daunert, S., Barrett, G., Feliciano, J.S., Shetty, R.S., Shrestha, S., and Smith-Spencer, W. (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100: 27052738.
  • Dayton, E.A., Basta, N.T., Payton, M.E., Bradham, K.D., Schroder, J.L., and Lanno, R.P. (2006) Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity. Environ Toxicol Chem 25: 719725.
  • Diels, A., De Smet, M., Hooybergha, L., and Corbisier, P. (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12: 149158.
  • DuBow, M.S. (1998) The detection and characterization of genetically programmed responses to environmental stress. Ann N Y Acad Sci 851: 286291.
  • Everhart, J.L., McNear, J.D., Peltier, E., Van Der Lelie, D., Chaney, R.L., and Sparks, D.L. (2006) Assessing nickel bioavailability in smelter-contaminated soils. Sci Total Environ 367: 732744.
  • Fairbrother, A., Wenstel, R., Sappington, K., and Wood, W. (2007) Framework for metal risk assessment. Ecotoxicol Environ Saf 68: 145227.
  • Flynn, C.H., Meharg, A.A., Bowyer, K.P., and Paton, G.I. (2003) Antimony bioavailability in mine soils. Environ Pollut 124: 93100.
  • Geebelen, W., Adriano, D.C., Van Der Lelie, D., Mench, M., Carleer, R., Clijsters, H., and Vangronsveld, J. (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249: 217228.
  • Golding, G.R., Kelly, C.A., Sparling, R., Loewen, P.C., Rudd, W.M.J., and Barkay, T. (2002) Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol Oceanogr 47: 967975.
  • Gu, M.B., Mitchell, R.J., and Kim, C.B. (2004) Whole-cell based biosensors for environmental biomonitoring and application. Adv Biochem Eng/Biotechnol 87: 269305.
  • Guzzo, J., Guzzo, A., and DuBow, M.S. (1992) Characterization of the effects of aluminum on luciferase biosensors for the detection of ecotoxicity. Toxicol Lett 64–65: 687693.
  • Hakkila, K., Maksimow, M., Karp, M., and Virta, M. (2002) Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301: 235242.
  • Hakkila, K., Green, T., Leskine, P., Ivsak, A., Marks, R., and Virta, M. (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fiber-optic tips. J Appl Toxicol 24: 333342.
  • Harms, H., Wells, M.C., and Van der Meer, J.R. (2006) Whole-cell living biosensors: are they ready for environmental application? Appl Microbiol Biotechnol 70: 273280.
  • Heinz, G.H., Hoffman, J.D., and Audet, J.D. (2004) Phosphorus amendment reduces bioavailability of lead to mallards ingesting contaminated sediments. Arch Environl Contam Toxicol 46: 534541.
  • Huckle, J.W., Morby, A.P., Turner, J.S., and Robinson, N.J. (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7: 177187.
  • Impellitteri, C.A., Saxe, J.K., Cochran, M., Janssen, G.M., and Allen, H.E. (2003) Predicting the bioavailability of copper and zinc in soils: modeling the partitioning of potentially bioavailable copper and zinc from soil solid to soil solution. Environ Toxicol Chem 22: 13801386.
  • Intawongse, M., and Dean, J.R. (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23: 3648.
  • Ivsak, A., Hakkila, K., and Virta, M. (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73: 51685171.
  • Ivask, A., Virta, M., and Kahru, A. (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem 34: 14391447.
  • Ivask, A., Francois, M., Kahru, A., Dubourguier, H.-C., Virta, M., and Douay, F. (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55: 147156.
  • Ivask, A., Green, T., Polyak, B., Mor, A., Kahru, A., Virta, M., and Marks, R. (2007) Fiber-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22: 13961402.
  • Ji, G., and Silver, S. (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174: 36843694.
  • Joyner, C.D., and Steven, E.L. (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146: 24352445.
  • Kahru, A., Ivask, A., Kasemets, K., Pollumaa, L., Kurvet, I., Francois, M., and Dubourguier, H.-C. (2005) Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ Toxicol Chem 24: 29732982.
  • Kamnev, A.A., and Van Der Lelie, D. (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20: 239258.
  • Kelly, M.E., Brauning, S.E., Schoof, R.A., and Ruby, M.V. (2002) Assessing oral Bioavailability of Metals in soil. Columbus, OH, USA: Battelle Press.
  • Köhler, S., Belkin, S., and Schmid, R.D. (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366: 769779.
  • Lappalainen, J., Karp, M., Nurmi, J., Juvonen, R., and Virta, M. (2000) Comparison of the total mercury content in sediment samples with a mercury sensor bacteria and Vibrio fischeri toxicity test. Environ Toxicol Chem 15: 443448.
  • Liao, V.H.-C., and Ou, K.-L. (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24: 16271631.
  • Liao, V.H.-C., Chien, M.-T., Tseng, Y.-Y., and Ou, K.-L. (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142: 1723.
  • Ma, Y.B., and Uren, N.C. (1998) Transformation of heavy metals added to soil – application of a new sequential extraction procedure. Geoderma 84: 157168.
  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., and Wilhelm, M. (2006) Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environ Sci Technol 40: 28122818.
  • Melten, U.D., Stark, B., and Pagilla, K. (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26: 145164.
  • Moore, J.T., Davis, S.T., and Dev, I.K. (1997) The development of [beta]-Lactamase as a highly versatile genetic reporter for eukaryotic cells. Anal Biochem 247: 203209.
  • Oomen, A.G., Rompelberg, C.J.M., Van de Kamp, E., Pereboom, D.P.K.H., De Zwart, L.L., and Sips, A.J.A.M. (2004) Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model. Arch Environ Contam Toxicol 46: 183188.
  • Peitzsch, N., Eberz, G., and Nies, H.D. (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64: 453458.
  • Pepi, M., Reniero, D., Baldi, B., and Barbieri, P. (2006) A comparison of mer::lux whole cell biosensors and moss, a bioindicator for estimating mercury Pollut. Water Air Soil Pollut 173: 163175.
  • Petanen, T., and Romantschuk, M. (2003) Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere 50: 409413.
  • Petanen, T., Virta, M., Karp, M., and Romantschuk, M. (2001) Construction and use of broad host range mercury and Arsenite sensor plasmid in the soil bacterium P. fluorescens OS8. Microbiol Ecol 41: 360368.
  • Ramanathan, S., Shi, W., Rosen, B.P., and Daunert, S. (1998) Bacteria-based chemiluminescence sensing system using [beta]-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369: 189195.
  • Rasmussen, L.D., Sorensen, S.J., Turner, R.R., and Barkay, T. (2000) Application of a mer–lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32: 639646.
  • Riether, K.B., Dollard, M.A., and Billard, P. (2001) Assessment of heavy metal bioavailability using Escherichia coli zntApxlux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57: 712716.
  • Roberto, F., Barnes, F.M.J., and Bruhn, F.D. (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58: 181188.
  • Rodriguez, R.R., Basta, T.N., Casteel, S.W., and Pace, T. (1999) An in-vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33: 642649.
  • Ron, E.Z. (2007) Biosensing environmental pollution. Curr Opin Biotechnol 18: 252256.
  • Rooney, C.P., Zhao, F.-J., and McGrath, S.P. (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25: 726732.
  • Rosen, B.P., Bhattacharjee, H., Zhou, T., and Walmsley, A.R. (1999) Mechanism of the ArsA ATPase. Biochim Biophys Acta 1461: 207215.
  • Ruby, M., Davis, A., Schoof, F., Eberle, S., and Sellstone, C.M. (1996) Estimation of lead and arsenic bioavailabilty using a physiologically based extraction test. Environl Sci Technol 30: 422430.
  • Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33: 36973705.
  • Schroder, J.L., Basta, T.N., Casteel, S.W., Evans, T.J., Payton, M., and Si, J. (2004) Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soil. J Environ Qual 33: 513521.
  • Scott, D.L., Ramanathan, S., Shi, W., Rosen, B.P., and Daunert, S. (1997) Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69: 1620.
  • Selifonova, O., Burlage, R., and Barkay, T. (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59: 30833090.
  • Semple, K.T., Doick, K.J., Wick, L.Y., and Harms, H. (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150: 166176.
  • Shetty, S.R., Deo, K.S., Liu, Y., and Daunert, S. (2002) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88: 664670.
  • Shetty, R.S., Deo, S.K., Shah, P., Sun, Y., Rosen, B.P., and Daunert, S. (2003) Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376: 1117.
  • Sijm, D., Kraaij, R., and Belfort, G. (2000) Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ Pollut 108: 113119.
  • Sorensen, S.J., Burmolle, M., and Hansen, L.H. (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17: 1116.
  • Stocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., et al. (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37: 47434750.
  • Tandy, S., Barbosa, V., Tye, A., Preston, S., Paton, G., Zhang, H., and McGrath, S. (2005) Comparison of different microbial bioassays to assess metal-contaminated soils. Environ Toxicol Chem 24: 530536.
  • Tauriainen, S., Karp, M., Chang, W., and Virta, M. (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63: 44564461.
  • Tauriainen, S., Karp, M., Chang, W., and Virta, M. (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13: 931938.
  • Tauriainen, S., Virta, M., Chang, W., Lampinen, J., and Karp, M. (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272: 191198.
  • Tauriainen, S., Virta, M., and Karp, M. (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34: 26612666.
  • The American Heritage® Dictionary of the English Language, 4th Edition (2007). [WWW document]. URL http://dictionary.reference.com/browse/bioavailability (retrieved from Dictionary.com website), Houghton Mifflin Company, Boston, USA.
  • Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, P., Mergeay, M., et al. (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113: 1926.
  • Tom-Petersen, A., Hosbond, C., and Nybroe, O. (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38: 5967.
  • Trang, P.T.K., Berg, M., Viet, P.H., Mui, N.V., and Van der Meer, J.R. (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39: 76257630.
  • Turpeinen, R., Virta, M., and Haggblom, M.M. (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxicol Chem 22: 16.
  • US National Research Council (2003) Bioavailability of Contaminants in Soils and Sediments, Processes, Tools, and Applications. Washington, DC, USA: The National Academic Press.
  • Van Straalen, N.M., Donker, M.H., Vijver, M.G., and Van Gastel, C.A.M. (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136: 409417.
  • Verma, N., and Singh, M. (2005) Biosensors for heavy metals. Biometals 18: 121129.
  • Virta, M., Lampinen, J., and Karp, M. (1995) A luminescence-based mercury biosensor. Anal Chem 67: 667669.
  • Yagi, K. (2007) Application of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73: 12511258.
  • Yoon, K.P., Misra, T.K., and Silver, S. (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173: 76437649.
  • Zhang, H., Zhao, F.J., Sun, B., Davidson, W., McGrath, S.P. (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35: 26022607.