SEARCH

SEARCH BY CITATION

References

  • Armstrong, J., and Armstrong, W. (1990) Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytol 114: 121128.
  • Aulenta, F., Catervi, A., Majone, M., Panero, S., Reale, P., and Rossetti, S. (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41: 25542559.
  • Bergel, A., Feron, D., and Mollica, A. (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7: 900904.
  • Bockris, J.O.M., and Drazic, D.M. (1972) Electro-Chemical Science. London, UK: Taylor and Francis.
  • Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483485.
  • Bond, D.R., and Lovley, D.R. (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69: 15481555.
  • Bond, D.R., and Lovley, D.R. (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71: 21862189.
  • Borenstein, S.W. (1994) Microbiologically Influenced Corrosion Handbook. Cambridge, UK: Woodhead Publishing.
  • Brett, C.M.A., and Brett, A.M.O. (1993) Electrochemistry: Principles, Methods, and Applications. Oxford, UK: Oxford university press.
  • Calegaro, M.L., Lima, F.H.B., and Ticianelli, E.A. (2006) Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions. J Power Sources 158: 735739.
  • Cao, Y.L., Yang, H.X., Ai, X.P., and Xiao, L.F. (2003) The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J Electroanal Chem 557: 127134.
  • Cheng, S., Liu, H., and Logan, B.E. (2006a) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40: 24262432.
  • Cheng, S., Liu, H., and Logan, B.E. (2006b) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40: 364369.
  • Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Pham, T.H., Boeckx, P., et al. (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41: 33543360.
  • Clauwaert, P., Van Der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., and Verstraete, W. (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41: 75647569.
  • Compeau, G., and Bartha, R. (1984) Methylation and demethylation of mercury under controlled redox, PH, and salinity conditions. Appl Environ Microbiol 48: 12031207.
  • Conrad, R. (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64: 5969.
  • De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N., and Verstraete, W. (2007) Minireview: The potential of enhanced manganese redox cycling for sediment oxidation. Geomicrobiol J 24: 547558.
  • De Schamphelaire, L., Van den Bossche, L., Dang, H.S., Höfte, M., Boon, N., Rabaey, K., and Verstraete, W. (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Env Sci Technol 42: 30533058.
  • De Windt, W., Boon, N., Siciliano, S.D., and Verstraete, W. (2003) Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. Environ Microbiol 5: 11921202.
  • DeLaune, R.D., Jugsujinda, A., Devai, I., and Patrick, W.H. (2004) Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. J Environ Sci Health. Part A 39: 19251933.
  • Devai, I., and Delaune, R.D. (1995a) Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org Geochem 23: 277279.
  • Devai, I., and DeLaune, R.D. (1995b) Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition. Org Geochem 23: 283287.
  • Dickinson, W.H., Caccavo, F., and Lewandowski, Z. (1996) The ennoblement of stainless steel by manganic oxide biofouling. Corros Sci 38: 14071422.
  • Dulon, S., Parot, S., Delia, M.L., and Bergel, A. (2007) Electroactive biofilms: new means for electrochemistry. J Appl Electrochem 37: 173179.
  • Dumas, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L., and Bergel, A. (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53: 468473.
  • Finneran, K.T., and Lovley, D.R. (2001) Anaerobic strategies for enhanced MTBE and TBA bioremediation. Env Sci Technol 35: 17851790.
  • Fleming, E.J., Mack, E.E., Green, P.G., and Nelson, D.C. (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72: 457464.
  • Freguia, S., Rabaey, K., Yuan, Z., and Keller, J. (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53: 598603.
  • Friauf, J.B. (1961) Fuel cells. Adv Energy Convers 1: 918.
  • Gagnon, C., Pelletier, E., Mucci, A., and Fitzgerald, W.F. (1996) Diagenetic behavior of methylmercury in organic-rich coastal sediments. Limnol Oceanogr 41: 428434.
  • Geiser, M., Avci, R., and Lewandowski, Z. (2002) Microbially initiated pitting on 316L stainless steel. Int Biodeterior Biodegrad 49: 235243.
  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., et al. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103: 1135811363.
  • Greenway, M., and Woolley, A. (1999) Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng 12: 3955.
  • Gregory, K.B., Bond, D.R., and Lovley, D.R. (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6: 596604.
  • Gregory, K.B., and Lovley, D.R. (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39: 89438947.
  • Hartnett, H.E., and Devol, A.H. (2003) Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State. Geochim Cosmochim Acta 67: 247264.
  • Hasvold, O., Henriksen, H., Melvaer, E., Citi, G., Johansen, B.O., Kjonigsen, T., and Galetti, R. (1997) Sea-water battery for subsea control systems. J Power Sources 65: 253261.
  • He, Z., Shao, H.B., and Angenent, L.T. (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens and Bioelectron 22: 32523255.
  • Heitz, E., Flemming, H.-C., and Sand, W., (eds) (1996) Microbially Influenced Corrosion of Materials: Scientific and Engineering Aspects. Berlin, Germany: Springer.
  • Ho, T.-Y., Taylor, G.T., Astor, Y., Varela, R., Muller-Karger, F., and Scranton, M.I. (2004) Vertical and temporal variability of redox zonation in the water column of the Cariaco Basin: implications for organic carbon oxidation pathways. Mar Chem 86: 89104.
  • Holliger, C., Wohlfarth, G., and Diekert, G. (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22: 383398.
  • Holmes, D.E., Bond, D.R., and Lovley, D.R. (2004a) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70: 12341237.
  • Holmes, D.E., Bond, D.R., O’Neill, R.A., Reimers, C.E., Tender, L.R., and Lovley, D.R. (2004b) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48: 178190.
  • Ishii, S., Hotta, Y., and Watanabe, K. (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72: 286294.
  • Kaku, N., Yonezawa, N., Kodama, Y., and Watanabe, K. (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79: 4349.
  • Katz, E., Shipway, A.N., and Willner, I. (2003) Biochemical fuel cells. In Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 1: Fundamentals and Survey of Systems. Vielstich, W., Gasteiger, H.A., and Lamm, A. (eds). New York, NY, USA: John Wiley and Sons, pp. 355381.
  • Kern, J., and Idler, C. (1999) Treatment of domestic and agricultural wastewater by reed bed systems. Ecol Eng 12: 1325.
  • Kielemoes, J., Bultinck, I., Storms, H., Boon, N., and Verstraete, W. (2002) Occurrence of manganese-oxidizing microorganisms and manganese deposition during biofilm formation on stainless steel in a brackish surface water. FEMS Microbiol Ecol 39: 4155.
  • Le Mer, J., and Roger, P. (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37: 2550.
  • Liu, H., Cheng, S.A., and Logan, B.E. (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39: 658662.
  • Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40: 51815192.
  • Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55: 259287.
  • Lovley, D.R. (2006a) Bug juice: harvesting electricity with microorganisms. Nature rev 4: 497508.
  • Lovley, D.R. (2006b) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17: 327332.
  • Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H., and Lovley, D.R. (2006) Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials. Biosens Bioelectron 21: 20582063.
  • Mason, R.P., Kim, E.H., Cornwell, J., and Heyes, D. (2006) An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Mar Chem 102: 96110.
  • Mathis, B.J., Marshall, C.W., Milliken, C.E., Makkar, R.S., Creager, S.E., and May, H.D. (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78: 147155.
  • Matilainen, T., Verta, M., Niemi, M., and Uusirauva, A. (1991) Specific rates of net methylmercury production in lake-sediments. Water Air Soil Pollut 56: 595605.
  • McGechan, M.B., Moir, S.E., Castle, K., and Smit, I.P.J. (2005) Modelling oxygen transport in a reedbed-constructed wetland purification system for dilute effluents. Biosystems Eng 91: 191200.
  • Min, B., and Logan, B.E. (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38: 58095814.
  • Nielsen, M.E., Reimers, C.E., and Stecher, H.A. (2007) Enhanced power from chambered benthic microbial fuel cells. Env Sci Technol 41: 78957900.
  • Niessen, J., Schröder, U., and Scholz, F. (2004) Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochem Commun 6: 955958.
  • Olesen, B.H., Avci, R., and Lewandowski, Z. (2000) Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels. Corros Sci 42: 211227.
  • Orfei, L.H., Simison, S., and Busalmen, J.P. (2006) Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface. Environ Sci Technol 40: 64736478.
  • Ouellet-Plamondon, C., Chazarenc, F., Comeau, Y., and Brisson, J. (2006) Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol Eng 27: 258264.
  • Park, D.H., and Zeikus, J.G. (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66: 12921297.
  • Park, D.H., and Zeikus, J.G. (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81: 348355.
  • Pletcher, D., and Walsh, F.C. (1984) Industrial electrochemistry. London, UK: Chapman and Hall.
  • Puigagut, J., Villaseñor, J., Salas, J.J., Bécares, E., and García, J. (2007) Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: a comparative study. Ecol Eng 30: 312319.
  • Rabaey, K., and Verstraete, W. (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23: 291298.
  • Rabaey, K., Lissens, G., Siciliano, S.D., and Verstraete, W. (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25: 15311535.
  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., and Verstraete, W. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70: 53735382.
  • Rabaey, K., Boon, N., Höfte, M., and Verstraete, W. (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39: 34013408.
  • Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W. (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39: 80778082.
  • Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., et al. (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40: 52185224.
  • Rabaey, K., Rodriguez, J., Blackall, L.L., Keller, J., Gross, P., Batstone, D., et al . (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. Isme J 1: 918.
  • Rabaey, K., Read, S.T., Clauwaert, P., Freguia, S., Bond, P.L., Blackall, L.L., and Keller, J. (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. Isme J 2: 519527.
  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 10981101.
  • Reimers, C.E., Tender, L.M., Fertig, S., and Wang, W. (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35: 192195.
  • Reimers, C.E., Girguis, P., Stecher, H.A., Tender, L.M., Ryckelynck, N., and Whaling, P. (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4: 123136.
  • Reimers, C.E., Stecher, H.A., Westall, J.C., Alleau, Y., Howell, K.A., Soule, L., et al. (2007) Substrate degradation kinetics, microbial diversity and current efficiency of microbial fuel cells supplied with marine plankton. Appl Environ Microbial 73: 70297040.
  • Rezaei, F., Richard, T.L., Brennan, R.A., and Logan, B.E. (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Env Sci Technol 41: 40534058.
  • Rhoads, A., Beyenal, H., and Lewandowski, Z. (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39: 46664671.
  • Roels, J., and Verstraete, W. (2001) Biological formation of volatile phosphorus compounds. Bioresour Technol 79: 243250.
  • Rosenbaum, M., Schröder, U., and Scholz, F. (2005) In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39: 63286333.
  • Ryckelynck, N., Stecher, H.A., and Reimers, C.E. (2005) Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochem 76: 113139.
  • Shantaram, A., Beyenal, H., Raajan, R., Veluchamy, A., and Lewandowski, Z. (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39: 50375042.
  • Shi, X., Avci, R., Geiser, M., and Lewandowski, Z. (2003) Comparative study in chemistry of microbially and electrochemically induced pitting of 316L stainless steel. Corros Sci 45: 25772595.
  • Shi, X.M., Avci, R., and Lewandowski, Z. (2002) Electrochemistry of passive metals modified by manganese oxides deposited by Leptothrix discophora: two-step model verified by ToF-SIMS. Corros Sci 44: 10271045.
  • Signes-Pastor, A., Burlo, F., Mitra, K., and Carbonell-Barrachina, A.A. (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137: 504510.
  • Singh, S.N. (2001) Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux. Environ Int 27: 265274.
  • Stumm, W., and Morgan, J.J. (1996) Aquatic Chemistry Chemical: Equilibria and Rates in Natural Waters. New York, UK: John Wiley and Sons.
  • Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., et al. (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20: 821825.
  • Tender, L.M., Gray, S.A., Groveman, E., Lowy, D.A., Kauffman, P., Melhado, J., et al. (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179: 571575.
  • Ter Heijne, A., Hamelers, H.V.M., and Buisman, C.J.N. (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41: 41304134.
  • Thomsen, U., Thamdrup, B., Stahl, D.A., and Canfield, D.E. (2004) Pathways of organic carbon oxidation in a deep lacustrine sediment, Lake Michigan. Limnol Oceanogr 49: 20462057.
  • Urgeghe, C. (2006) Oxygen evolution and oxygen reduction in electrochemical energy conversion. PhD dissertation, University of Ferrara.
  • Wang, B. (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152: 115.
  • Whitfield, M. (1972) The electrochemical characteristics of natural redox cells. Limnol Oceanogr 17: 383393.
  • Wilcock, W.S.D., and Kauffman, P.C. (1997) Development of a seawater battery for deep-water applications. J Power Sources 66: 7175.
  • Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., and Herrmann, I. (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7: 14051410.
  • Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., and Herrmann, I. (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40: 51935199.