• Ampe, F., Kiss, E., Sabourdy, F., and Batut, J. (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4: R15.
  • Attila, C., Ueda, A., Cirillo, S.L.G., Cirillo, J.D., Chen, W., and Wood, T.K. (2008a) Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol 1: 1729.
  • Attila, C., Ueda, A., and Wood, T.K. (2008b) PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulate virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol 78: 293307.
  • Becker, A., Bergès, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., et al. (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17: 292303.
  • Böltner, D., Godoy, P., Muñoz-Rojas, J., Duque, E., Moreno-Morillas, S., Sánchez, L., and Ramos, J.L. (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1: 8793.
  • Drigo, B., Kowalchuk, G.A., and Van Veen, J.A. (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44: 667679.
  • Mark, G.L., Dow, J.M., Kiely, P.D., Higgins, H., Haynes, J., Baysse, C., et al. (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci USA 102: 1745417459.
  • Matilla, M.A., Espinosa-Urgel, M., Rodríguez-Herva, J.J., Ramos, J.L., and Ramos-González, M.I. (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8: R179.1–R179.13.
  • Prithiviraj, B., Weir, T., Bais, H.P., Schweizer, H.P., and Vivanco, J.M. (2005) Plant models for animal pathogenesis. Cell Microbiol 7: 315324.
  • Ramos-González, M.I., Campo, M.J., and Ramos, J.L. (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187: 40334041.
  • Rediers, H., Rainey, P.B., Vanderleyden, J., and De Mot, R. (2005) Unravelling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 69: 217261.
  • Ueda, A., and Wood, T.K. (2008) Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley. Appl Microbiol Biotechnol 79: 843858.
  • Yuan, Z.-C., Liu, P., Saenkham, P., Kerr, K., and Nester, E.W. (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signalling involved in Agrobacterium–plant interactions. J Bacteriol 190: 494507.