SEARCH

SEARCH BY CITATION

References

  • Adler, E. (1977) Lignin chemistry – past, present and future. Wood Sci Technol 11: 169218.
  • Bajpai, P. (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24: 158.
  • Baldrian, P. (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30: 215242.
  • Banci, L. (1997) Structural properties of peroxidases. J Biotechnol 53: 253263.
  • Banci, L., Bertini, I., Turano, P., Tien, M., and Kirk, T.K. (1991) Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase. Proc Natl Acad Sci USA 88: 69566960.
  • Banci, L., Bertini, I., Pierattelli, R., Tien, M., and Vila, A.J. (1995) Factoring of the hyperfine shifts in the cyanide adduct of lignin peroxidase from P. chrysosporium. J Am Chem Soc 117: 86598667.
  • Banci, L., Camarero, S., Martínez, A.T., Martínez, M.J., Pérez-Boada, M., Pierattelli, R., et al. (2003) NMR study of Mn(II) binding by the new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J Biol Inorg Chem 8: 751760.
  • Bao, W.L., Fukushima, Y., Jensen, K.A., Moen, M.A., and Hammel, K.E. (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354: 297300.
  • Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., and Hajdu, J. (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417: 463468.
  • Blodig, W., Smith, A.T., Winterhalter, K., and Piontek, K. (1999) Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys 370: 8692.
  • Bourbonnais, R., and Paice, M.G. (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267: 99102.
  • Camarero, S., Bocchini, P., Galletti, G.C., Martínez, M.J., and Martínez, A.T. (2001) Compositional changes of wheat lignin by a fungal peroxidase analyzed by Pyrolysis-GC/MS. J Anal Appl Pyrolysis 58/59: 413423.
  • Camarero, S., Ibarra, D., Martínez, M.J., and Martínez, A.T. (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71: 17751784.
  • Camarero, S., Ibarra, D., Martínez, A.T., Romero, J., Gutiérrez, A., and Del Río, J.C. (2007) Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 40: 12641271.
  • Cañas, A., Alcalde, M., Plou, F.J., Martínez, M.J., Martínez, A.T., and Camarero, S. (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41: 29642971.
  • Candeias, L.P., and Harvey, P.J. (1995) Lifetime and reactivity of the veratryl alcohol radical cation – implications for lignin peroxidase catalysis. J Biol Chem 270: 1674516748.
  • Celik, A., Cullis, P.M., Sutcliffe, M.J., Sangar, R., and Raven, E.L. (2001) Engineering the active site of ascorbate peroxidase. Eur J Biochem 268: 7885.
  • Chen, C.-L., and Chang, H. (1985) Chemistry of lignin biodegradation. In Biosynthesis and Biodegradation of Wood Components. Higuchi, T. (ed.). Orlando, FL, USA: Academic Press, pp. 535555.
  • Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A., et al. (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17: 379384.
  • Claus, H. (2004) Laccases: structure reactions, distribution. Micron 35: 9396.
  • Conesa, A., Van Den Hondel, C.A.M.J.J., and Punt, P.J. (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66: 30163023.
  • Conesa, A., Jeenes, D., Archer, D.B., VandenHondel, C.A.M.J., and Punt, P.J. (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68: 846851.
  • Cullen, D. (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53: 273289.
  • Dávila-Vázquez, G., Tinoco, R., Pickard, M.A., and Vázquez-Duhalt, R. (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme Microb Technol 36: 223231.
  • Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K., and Smith, A.T. (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37: 1509715105.
  • Du, P., Collins, J.R., and Loew, G.H. (1992) Homology modeling of a heme protein, lignin peroxidase, from the crystal structure of cytochrome c peroxidase. Protein Eng 5: 679691.
  • Dunford, H.B. (1999) Heme Peroxidases. New York, USA: Wiley-VCH.
  • Eibes, G.M., Lú-Chau, T.A., Ruiz-Dueñas, F.J., Feijoo, G., Martínez, M.J., Martínez, A.T., et al. (2009) Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32: 129134.
  • Eriksson, K.-E.L., Blanchette, R.A., and Ander, P. (1990) Microbial and Enzymatic Degradation of Wood Components. Berlin, Germany: Springer-Verlag.
  • Feng, M.L., Tachikawa, H., Wang, X.T., Pfister, T.D., Gengenbach, A.J., and Lu, Y. (2003) Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. J Biol Inorg Chem 8: 699706.
  • Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T., and Poulos, T.L. (1997) Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nat Struct Biol 4: 10321038.
  • Galbe, M., and Zacchi, G. (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Engineer Biotechnol 108: 4165.
  • Gellerstedt, G., and Henriksson, G. (2008) Lignins: major sources, structure and properties. In Monomers, Polymers and Composites from Renewable Resources. Belgacem, M., and Gandini, A. (eds). Amsterdam, the Netherlands: Elsevier, pp. 201224.
  • George, S.J., Kvaratskhelia, M., Dilworth, M.J., and Thorneley, R.N.F. (1999) Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochem J 344: 237244.
  • Gil-Rodríguez, P., Ferreira-Batista, C., Vázquez-Duhalt, R., and Valderrama, B. (2008) A novel heme peroxidase from Raphanus sativus intrinsically resistant to hydrogen peroxide. Eng Life Sci 8: 286296.
  • Glenn, J.K., Morgan, M.A., Mayfield, M.B., Kuwahara, M., and Gold, M.H. (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114: 10771083.
  • Gold, M.H., Youngs, H.L., and Gelpke, M.D. (2000) Manganese peroxidase. Met Ions Biol Syst 37: 559586.
  • Gu, L., Lajoie, C., and Kelly, C. (2003) Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Biotechnol Prog 19: 14031409.
  • Guillén, F., and Evans, C.S. (1994) Anisaldehyde and veratraldehyde acting as redox cycling agents for H2O2 production by Pleurotus eryngii. Appl Environ Microbiol 60: 28112817.
  • Guillén, F., Gómez-Toribio, V., Martínez, M.J., and Martínez, A.T. (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch Biochem Biophys 383: 142147.
  • Gutiérrez, A., Caramelo, L., Prieto, A., Martínez, M.J., and Martínez, A.T. (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl Environ Microbiol 60: 17831788.
  • Gutiérrez, A., Rencoret, J., Ibarra, D., Molina, S., Camarero, S., Romero, J., et al. (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41: 41244129.
  • Hammel, K.E., and Cullen, D. (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11: 349355.
  • Harvey, P.J., Schoemaker, H.E., and Palmer, J.M. (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195: 242246.
  • Heinfling, A., Ruiz-Dueñas, F.J., Martínez, M.J., Bergbauer, M., Szewzyk, U., and Martínez, A.T. (1998a) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428: 141146.
  • Heinfling, A., Martínez, M.J., Martínez, A.T., Bergbauer, M., and Szewzyk, U. (1998b) Transformation of industrial dyes by manganese peroxidase from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64: 27882793.
  • Higuchi, T. (1997) Biochemistry and Molecular Biology of Wood. London, UK: Springer-Verlag.
  • Hiner, A.N.P., Raven, E.L., Thorneley, R.N.F., García-Canovas, F., and Rodríguez-López, J.N. (2002) Mechanisms of compound I formation in heme peroxidases. J Inorg Biochem 91: 2734.
  • Johjima, T., Itoh, H., Kabuto, M., Tokimura, F., Nakagawa, T., Wariishi, H., et al. (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci USA 96: 19891994.
  • Karhunen, P., Rummakko, P., Sipila, J., Brunow, G., and Kilpeläinen, I. (1995) Dibenzodioxocins – a novel type of linkage in softwood lignins. Tetrahedron Lett 36: 169170.
  • Kersten, P., and Cullen, D. (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44: 7787.
  • Khindaria, A., Yamazaki, I., and Aust, S.D. (1996) Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35: 64186424.
  • Kirk, T.K., and Farrell, R.L. (1987) Enzymatic ‘combustion’: the microbial degradation of lignin. Annu Rev Microbiol 41: 465505.
  • Li, H.Y., and Poulos, T.L. (1994) Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures. Structure 2: 461464.
  • Lú-Chau, T.A., Ruiz-Dueñas, F.J., Camarero, S., Feijoo, G., Martínez, M.J., Lema, J.M., et al. (2004) Effect of pH on the stability of Pleurotus eryngii versatile peroxidase during heterologous production in Emericella nidulans. Bioprocess Biosyst Eng 26: 287293.
  • Marques, G., Gamelas, J.A.F., Evtuguin, D., Ruiz-Dueñas, F.J., Morales, M., Del Río, J.C., et al. (2008) Versatile peroxidase reoxidation of Mn-based polyoxomethalate in chlorine-free bleaching of eucalypt pulp. Proceeding of the 8th International Peroxidase Symposium, Tampere, 20–23 August.
  • Martínez, A.T. (2002) Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30: 425444.
  • Martínez, A.T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., et al. (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13: 265274.
  • Martínez, A.T., Speranza, M., Ruiz-Dueñas, F.J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005) Biodegradation of lignocellulosics: microbiological, chemical and enzymatic aspects of fungal attack to lignin. Int Microbiol 8: 195204.
  • Martínez, A.T., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Jiménez-Barbero, J., et al. (2008) Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study. Phytochemistry 69: 28312843.
  • Martínez, D., Larrondo, L.F., Putnam, N., Gelpke, M.D., Huang, K., Chapman, J., et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22: 695700.
  • Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D.S., Schmoll, M., Kubicek, C.P., et al. (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA (in press).
  • Mester, T., and Tien, M. (2001) Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 284: 723728.
  • Mester, T., Ambert-Balay, K., Ciofi-Baffoni, S., Banci, L., Jones, A.D., and Tien, M. (2001) Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 276: 2298522990.
  • Miki, Y., Tanaka, H., Nakamura, M., and Wariishi, H. (2006) Isolation and characterization of a novel lignin peroxidase from the white-rot basidiomycete Trametes cervina. J Fac Agr Kyushu Univ 51: 99104.
  • Millis, C.D., Cai, D., Stankovich, M.T., and Tien, M. (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry 28: 84848489.
  • Miyazaki, C., and Takahashi, H. (2001) Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2. FEBS Lett 509: 111114.
  • Miyazaki-Imamura, C., Oohira, K., Kitagawa, R., Nakano, H., Yamane, T., and Takahashi, H. (2003) Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Protein Eng 16: 423428.
  • Morgenstern, I., Klopman, S., and Hibbett, D.S. (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes. J Mol Evol 66: 243257.
  • Nimz, H. (1974) Beech lignin – proposal of a constitutional scheme. Angew Chem Int Ed Engl 13: 313321.
  • Paice, M.G., Bourbonnais, R., Reid, I.D., Archibald, F.S., and Jurasek, L. (1995) Oxidative bleaching enzymes: a review. J Pulp Paper Sci 21: J280J284.
  • Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Basosi, R., Choinowski, T., Martínez, M.J., et al. (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J Mol Biol 354: 385402.
  • Piontek, K., Glumoff, T., and Winterhalter, K. (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett 315: 119124.
  • Pogni, R., Baratto, M.C., Teutloff, C., Giansanti, S., Ruiz-Dueñas, F.J., Choinowski, T., et al. (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multi-frequency EPR and DFT study. J Biol Chem 281: 95179526.
  • Poulos, T.L., Freer, S.T., Alden, R.A., Edwards, S.L., Skogland, U., Takio, K., et al. (1980) The crystal structure of cytochrome c peroxidase. J Biol Chem 255: 575580.
  • Poulos, T.L., Edwards, S.L., Wariishi, H., and Gold, M.H. (1993) Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 268: 44294440.
  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., et al. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3: 2960.
  • Reading, N.S., and Aust, S.D. (2000) Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability. Biotechnol Prog 16: 326333.
  • Del Río, J.C., Marques, G., Rencoret, J., Martínez, A.T., and Gutiérrez, A. (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55: 54615468.
  • Riva, S. (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24: 219226.
  • Rodríguez, E., Nuero, O., Guillén, F., Martínez, A.T., and Martínez, M.J. (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36: 909916.
  • Ruiz-Dueñas, F.J., Morales, M., Pérez-Boada, M., Choinowski, T., Martínez, M.J., Piontek, K., et al. (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic and crystallographic study. Biochemistry 46: 6677.
  • Ruiz-Dueñas, F.J., Morales, M., Mate, M.J., Romero, A., Martínez, M.J., Smith, A.T., et al. (2008) Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 47: 16851695.
  • Ryu, K., Hwang, S.Y., Kim, K.H., Kang, J.H., and Lee, E.K. (2008) Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. J Biotechnol 133: 110115.
  • Sasaki, S., Nonaka, D., Wariishi, H., Tsutsumi, Y., and Kondo, R. (2008) Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin. Phytochemistry 69: 348355.
  • Schoemaker, H.E., Lundell, T.K., Floris, R., Glumoff, T., Winterhalter, K.H., and Piontek, K. (1994) Do carbohydrates play a role in lignin peroxidase cycle? Redox catalysis in the endergonic region of the driving force. Bioorganic Med Chem 2: 509519.
  • Sharma, P., Goel, R., and Capalash, N. (2007) Bacterial laccases. World J Microbiol Biotechnol 23: 823832.
  • Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Pérez-Boada, M., et al. (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115: 333343.
  • Sixta, H. (2006) Handbook of Pulp. Weinheim, Germany: Wiley-VCH.
  • Smith, A.T., and Doyle, W.A. (2006) Engineered peroxidases with veratryl alcohol oxidase activity. Patent (International) WO/2006-114616.
  • Smith, A.T., and Veitch, N.C. (1998) Substrate binding and catalysis in heme peroxidases. Curr Opin Chem Biol 2: 269278.
  • Stewart, P., Whitwam, R.E., Kersten, P.J., Cullen, D., and Tien, M. (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62: 860864.
  • Sutherland, G.R.J., and Aust, S.D. (1996) The effects of calcium on the thermal stability and activity of manganese peroxidase. Arch Biochem Biophys 332: 128134.
  • Taylor, T.N., and Osborne, J.M. (1996) The importance of fungi in shaping the paleoecosystem. Rev Paleobot Palyn 90: 249262.
  • Tien, M., and Kirk, T.K. (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661663.
  • Timofeevski, S.L., Nie, G., Reading, N.S., and Aust, S.D. (1999) Engineering a functional hybrid of manganese peroxidase and lignin peroxidase. Plant Peroxidase Newsl 13: 99111.
  • Tinoco, R., Verdín, J., and Vázquez-Duhalt, R. (2007) Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta. J Mol Catal B Enzym 46: 17.
  • Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., and Watanabe, T. (2008) Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Appl Environ Microbiol 74: 28732881.
  • Valderrama, B., Ayala, M., and Vázquez-Duhalt, R. (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9: 555565.
  • Verdín, J., Pogni, R., Baeza, A., Baratto, M.C., Basosi, R., and Vázquez-Duhalt, R. (2006) Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophys Chem 121: 163170.
  • Wang, H.K., Lu, F.P., Sun, W.F., and Du, L.X. (2004) Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Biotechnol Lett 26: 15691573.
  • Wang, Y.X., Vázquez-Duhalt, R., and Pickard, M.A. (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49: 675682.
  • Widsten, P., and Kandelbauer, A. (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42: 293307.
  • Zhang, L.M., Gellerstedt, G., Ralph, J., and Lu, F.C. (2006) NMR studies on the occurrence of spirodienone structures in lignins. J Wood Chem Technol 26: 6579.