SEARCH

SEARCH BY CITATION

References

  • Anderson, R.K.I., Jayaraman, K., Voisard, D., Marison, I.W., and Von Stockar, U. (2002) Heat flux as an on-line indicator of metabolic activity in pilot scale bioreactor during the production of bacillus thuringiensis var. galleriae-based biopesticides. Thermochim Acta 386: 127138.
  • Antoce, O.A., Antoce, V., Takahashi, K., Pomohaci, N., and Namolosanu, I. (1997) A calorimetric method applied to the study of yeast growth inhibition by alcohols and organic acids. Am J Enol Viticult 48: 413422.
  • Aulenta, F., Bassani, C., Ligthart, J., Majone, M., and Tilche, A. (2002) Calorimetry: a tool for assessing microbial activity under aerobic and anoxic conditions. Water Res 36: 12971305.
  • Babel, W., and Müller, R.H. (1985) Correlation between cell composition and carbon conversion efficiency in microbial growth: a theoretical study. Appl Microbiol Biotechnol 22: 201207.
  • Boling, E.A., Blanchard, G.C., and Russell, W.J. (1973) Bacterial identification by microcalorimetry. Nature 241: 472473.
  • Buchholz, F., Wick, L.Y., Harms, H., and Maskow, T. (2007) The kinetics of polycyclic aromatic hydrocarbon (PAH) biodegradation assessed by isothermal titration calorimetry (ITC). Thermochim Acta 458: 4753.
  • Burns, T.P. (1989) Lindeman's contradiction and the trophic structure of ecosystems. Ecology 70: 13551362.
  • Cordier, J.L., Butsch, B.M., Birou, B., and Von Stockar, U. (1987) The relationship between elemental composition and heat of combustion of microbial biomass. Appl Microbiol Biotechnol 25: 305312.
  • Domalski, E.S. (1972) Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P and S. J Phys Chem Ref Data 1: 221276.
  • Dubrunfaut, M. (1856) Note sur al chaleur et le travail mecanique produits lar la fermentation vineuse. C R Acad Sci 42: 945948.
  • Garci'a-Payo, M.C., Ampuero, S., Liu, J.S., Marison, I.W., and Von Stockar, U. (2002) The development and characterization of a high resolution bio-reaction calorimeter for weakly exothermic cultures. Thermochimica Acta 391: 2539.
  • Gnaiger, E., and Kemp, R.B. (1990) Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta 1016: 328332.
  • Govindjee (1999) On the requirement of a minimum number of four versus eight quanta of light for the evolution of oxygen in photosynthesis: a historical note. Photosynth Res 59: 249254.
  • Greene, R.L., King, C.N., Zubeck, R.B., and Hauser, J.J. (1972) Specific heat of granular aluminum films. Phys Rev B 6: 32973305.
  • Guosheng, L., Yi, L., Xiangdong, C., Peng, L., Ping, S., and Songsheng, Q. (2003) Study on interaction between T 4 phage and Escherichia coli B by microcalorimetric method. J Virol Methods 112: 137143.
  • Hansen, L.D., Macfarlane, C., McKinnon, N., Smith, B.N., and Criddle, R.S. (2004) Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochim Acta 422: 5561.
  • Heijnen, J.J. (1999) Bioenergetics of microbial growth. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, Bioseparation. Flickinger, M.C., and Drew, S.W. New York, NY, USA: John Wiley & Sons, pp. 267291.
  • Heijnen, S.J. (1994) Thermodynamics of microbial growth and its implications for process design. Trends Biotechnol 12: 483492.
  • Higuera-Guisset, J., Rodriguez-Viejo, J., Chacon, M., Munoz, F.J., Vigues, N., Mas, J., et al. (2005) Calorimetry of microbial growth using a thermopile based microreactor. Thermochim. Acta 427: 187191.
  • Janssen, M., Patino, R., and Von Stockar, U. (2004) Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochim Acta 435: 1827.
  • Janssen, M., Wijffels, R., and Von Stockar, U. (2007) Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochim Acta 458: 5464.
  • Jequier, E., and Schutz, Y. (1983) Long-term measurements of energy expenditure in humans using a respiration chamber. Am J Clin Nutr 38: 989.
  • Johannessen, E.A., Weaver, J.M.R., Bourova, L., Svoboda, P., Cobbold, P.H., and Cooper, J.M. (2002) Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays. Anal Chem 74: 21902197.
  • Kemp, R.B. (2000) Fire burn and cauldron bubble (W. Shakespeare): what the calorimetric–respirometric (CR) ratio does for our understanding of cells? Thermochim Acta 355: 115124.
  • Kleiber, M. (1961) The Fire of Life. An Introduction to Animal Energetics. New York, NY, USA: Wiley.
  • Koga, K., Hiraoka, S.I., Kim, Y.S., Hagiwara, D., Suehiro, Y., Sakamoto, Y., and Takahashi, K. (2001) Calorimetric studies on the ability of organic matter decomposition by microbes in different kinds of soils. Cal Therm Anal 28: 5461.
  • Kramer, D.M., Avenson, T.J., and Edwards, G.E. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9: 349357.
  • Krell, T. (2008) Microcalorimetry: a response to challenges in modern biotechnology. Microbial Biotech 1: 126136.
  • Lamprecht, I., Seymour, R.S., and Schultze-Motel, P. (1998) Direct and indirect calorimetry of thermogenic flowers of the sacred lotus, Nelumbo nucifera. Thermochim Acta 309: 516.
  • Larsson, C., Lidén, G., Niklasson, C., and Gustafsson, L. (1991) Calorimetric control of fed-batch cultures of Saccharomyces cerevisiae. Bioprocess Biosyst Eng 7: 151155.
  • Lerchner, J., Maskow, T., and Wolf, G. (2007) Chip calorimetry and its use for biochemical and cell biological investigations. Chem Eng Process 47: 991999.
  • Lerchner, J., Wolf, A., Schneider, H.J., Mertens, F., Kessler, E., Baier, V., et al. (2008a) Nano-calorimetry of small-sized biological samples. Thermochim Acta 477: 4853.
  • Lerchner, J., Wolf, A., Buchholz, F., Mertens, F., Neu, T.R., Harms, H., and Maskow, T. (2008b) Miniaturized calorimetry – a new method for real-time biofilm activity analysis. J Microbiol Methods 74: 7481.
  • Liu, J.S., Marison, I.W., and Von Stockar, U. (2001) Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng 75: 170180.
  • Lindeman, R.L. (1942) The trophic–dynamic aspect of ecology. Ecology 23: 399414.
  • Magee, J.L., DeWitt, T.W., Smith, E.C., and Daniels, F. (1939) A photocalorimeter: the quantum efficiency of photosynthesis in algae. J Am Chem Soc 61: 35293533.
  • Maskow, T., and Babel, W. (1998) Calorimetric investigations of bacterial growth on phenol-efficiency and velocity of growth as a function of the assimilation pathways. Thermochim Acta 309: 97103.
  • Maskow, T., and Babel, W. (2000) Calorimetrically recognized maximum yield of poly-3-hydroxybutyrate (PHB) continuously synthesized from toxic substrates. J Biotechnol 77: 247253.
  • Maskow, T., and Babel, W. (2001) Calorimetrically obtained information about the efficiency of ectoine synthesis from glucose in Halomonas elongata. Biochim Biophys Acta 1527: 410.
  • Maskow, T., and Kleinsteuber, S. (2004) Carbon and energy fluxes during haloadaptation of Halomonas sp. EF11 growing on phenol. Extremophiles 8: 133141.
  • Maskow, T., Olomolaiye, D., Breuer, U., and Kemp, R. (2004) Flow calorimetry and dielectric spectroscopy to control the bacterial conversion of toxic substrates into polyhydroxyalkanoates. Biotechnol Bioeng 85: 547552.
  • Maskow, T., Lerchner, J., Peitzsch, M., Harms, H., and Wolf, G. (2006a) Chip calorimetry for the monitoring of whole cell biotransformation. J Biotechnol 122: 431442.
  • Maskow, T., Müller, S., Losche, A., Harms, H., and Kemp, R. (2006b) Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry. Biotechnol Bioeng 93: 541.
  • Meier-Schneiders, M., and Schäfer, F. (1996) Quantification of small enthalpic differences in anaerobic microbial metabolism – a calorimetry-supported approach. Thermochim Acta 275: 116.
  • Meier-Schneiders, M., Grosshans, U., Busch, C., and Eigenberger, G. (1995a) Biocalorimetry-supported analysis of fermentation processes. Appl Microbiol Biotechnol 43: 431439.
  • Meier-Schneiders, M., Schäfer, F., Grosshans, U., and Busch, C. (1995b) Impact of carbon dioxide evolution on the calorimetric monitoring of fermentations. Thermochim Acta 251: 8597.
  • Michal, G. (1999) Biochemical Pathways. New York, USA: Wiley.
  • Mukhanov, V.S., and Kemp, R.B. (2006) Simultaneous photocalorimetric and oxygen polarographic measurements on Dunaliella maritima cells reveal a thermal discrepancy that could be due to nonphotochemical quenching. Thermochim Acta 446: 1119.
  • Mukhanov, V.S., and Kemp, R.B. (2009) Design and experience of using light-emitting diodes (LEDs) as the inbuilt light source for a customised differential photomicrocalorimeter. J Therm Anal Calorimetry 95: 731736.
  • Page, D.L., and Pizziconi, V.B. (1997) A cell-based immunobiosensor with engineered molecular recognition – Part II: enzyme amplification systems. Biosens Bioelectron 12: 457466.
  • Paulik, M.A., Buckholz, R.G., Lancaster, M.E., Dallas, W.S., Hull-Ryde, E.A., Weiel, J.E., and Lenhard, J.M. (1998) Development of infrared imaging to measure thermogenesis in cell culture: thermogenic effects of uncoupling protein-2, troglitazone, and β-adrenoceptor agonists. Pharm Res 15: 944949.
  • Peitzsch, M., Kiesel, K., Harms, H., and Maskow, T. (2007) Real time analysis of Escherichia coli biofilms using calorimetry. Chem Eng Proc 47: 10001006.
  • Peters, P., Galinski, E.A., and Truper, H.G. (1990) The biosynthesis of ectoine. FEMS Microbiol Lett 71: 157162.
  • Pizziconi, V.B., and Page, D.L. (1997) A cell-based immunobiosensor with engineered molecular recognition – Part I: design feasibility. Biosens Bioelectron 12: 287299.
  • Von Rege, H., and Sand, W. (1998) Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms. J Microbiol Methods 33: 227235.
  • Russell, W.J., Zettler, J.F., Blanchard, G.C., and Boling, E.A. (1975) Bacterial Identification by Microcalorimetry. New York, NY, USA: Wiley.
  • Schill, N., Van Gulik, W.M., Voisard, D., and Von Stockar, U. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51: 645658.
  • Schill, N.A., Liu, J.S., and Von Stockar, U. (1999) Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnol Bioeng 64: 7481.
  • Schön, A., and Wadsö, I. (1988) The use of microcalorimetry in studies of mammalian cells. J Therm Anal Calorim 33: 4754.
  • Schubert, T., Breuer, U., Harms, H., and Maskow, T. (2007) Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor. J Biotechnol 130: 2431.
  • Schumer, D., Breuer, U., Harms, H., and Maskow, T. (2007) Thermokinetic analysis reveals the complex growth and haloadaptation pattern of the non-conventional yeast Debaryomyces hansenii. Eng Life Sci 7: 110.
  • Stephanopoulos, G.N., Aristidou, A.A., and Nielsen, J. (1998) Metabolic Engineering: Principles and Methodologies. San Diego, CA, USA: Academic Press.
  • Von Stockar, U., and Birou, B. (1989) The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation. Biotechnol Bioeng 34: 86101.
  • Von Stockar, U., and Liu, J.S. (1999) Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochem Biophys Acta 1412: 191211.
  • Von Stockar, U., and Marison, I.W. (1989) The use of calorimetry in biotechnology. Adv Biochem Eng Biot 40: 93136.
  • Von Stockar, U., and Marison, I.W. (1991) Large-scale calorimetry and biotechnology. Thermochim Acta 193: 215242.
  • Von Stockar, U., Gustafsson, L., Larsson, C., Marison, I., Tissot, P., and Gnaiger, E. (1993) Thermodynamic considerations in constructing energy balances for cellular growth. Biochim Biophys Acta 1183: 221240.
  • Von Stockar, U., Maskow, T., Liu, J., Marison, I.W., and Patino, R. (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121: 517533.
  • Von Stockar, U., Vojinovića, V., Maskow, T., and Liu, J.-S. (2007). Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes? Chem Eng Proc 47: 980990.
  • Thornton, W. (1917) The relation of oxygen to the heat of combustion of organic compounds. Philos Mag 33: 196203.
  • Tijhuis, L., Van Loosdrecht, M.C.M., and Heijnen, J.J. (1993) A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42: 509519.
  • Torres, F.E., Kuhn, P., De Bruyker, D., Bell, A.G., Wolkin, M.V., Peeters, E., et al. (2004) Enthalpy arrays. Proc Natl Acad Sci USA 101: 95179522.
  • Türker, M. (2004) Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochim Acta 419: 7381.
  • Verhaegen, K., Baert, K., Simaels, J., and Van Driessche, W. (2000) A high-throughput silicon microphysiometer. Sens Actuators B 82: 186190.
  • Voisard, D., Pugeaud, P., Kumar, A.R., Jenny, K., Jayaraman, K., Marison, I.W., and Von Stockar, U. (2002) Development of a large-scale biocalorimeter to monitor and control bioprocesses. Biotechnol Bioeng 80: 125138.
  • Walker, D.A. (2002) The Z-scheme – down hill all the way. Trends Plant Sci 7: 183185.
  • Wentzien, S., Sand, W., Albertsen, A., and Steudel, R. (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161: 116125.
  • Yao, J., Wang, C., Xu, F., Tian, L., Wang, Y., Chen, H., et al. (2007) An in vitro microcalorimetric method for studying the toxic effect of cadmium on microbial activity of an agricultural soil. Ecotoxicology 16: 503509.