SEARCH

SEARCH BY CITATION

References

  • Abraham, E.P., Huddlestone, J.A., Jayatilake, G.S., O'Sullivan, J., and White, R.L. (1981) Conversion of δ(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N in cell-free extracts of Cephalosporium acremonium. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Gregory, G.I. (ed.). London: Royal Society of Chemistry, pp. 125134.
  • Aharonowitz, Y., Cohen, G., and Martín, J.F. (1992) Penicillin and cephalosporin biosynthetic genes: structure, regulation, and evolution. Annu Rev Microbiol 46: 461495.
  • Aharonowitz, Y., Bergmeyer, J., Cantoral, J.M., Cohen, G., Demain, A.L., Fink, U., et al. (1993) Delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase, the multienzyme integrating the four primary reactions in beta-lactam biosynthesis, as a model peptide synthetase. Biotechnology 11: 807810.
  • Álvarez, E., Cantoral, J.M., Barredo, J.L., Díez, B., and Martín, J.F. (1987) Purification to homogeneity and characterization of the acyl-CoA: 6-APA acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31: 16751682.
  • Álvarez, E., Meesschaert, B., Montenegro, E., Gutiérrez, S., Díez, B., Barredo, J.L., and Martín, J.F. (1993) The isopenicillin N acyltransferase of Penicillium chrysogenum has isopenicillin N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem 215: 323332.
  • Andrade, A.C., Van Nistelrooy, J.G., Peery, R.B., Skatrud, P.L., and De Waard, M.A. (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263: 966977.
  • Baldwin, J.E., Keeping, J.W., Singh, P.D., and Vallejo, C.A. (1981) Cell free conversion of isopenicillin N into deacetoxycephalosporin C by Cephalosporium acremonium mutant M-0198. Biochem J 194: 649651.
  • Baldwin, J.E., Killin, S.J., Pratt, A.J., Sutherland, J.D., Turner, N.J., Crabbe, J.C., et al. (1987) Purification and characterization of cloned isopenicillin N synthetase. J Antibiot 40: 652659.
  • Baldwin, J.E., Bird, J.W., Field, R.A., O'Callaghan, N.M., and Schofield, C.J. (1990) Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. J Antibiot 43: 10551057.
  • Baldwin, J.E., Bird, J.W., Field, R.A., O'Callaghan, N.M., Schofield, C.J., and Willis, A.C. (1991a) Isolation and partial purification of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus: evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot 44: 241248.
  • Baldwin, J.E., Lynch, G.P., and Schofield, C.J. (1991b) Isopenicillin N synthase: a new mode of reactivity. J Chem Soc Chem Commun 1: 736738.
  • Bañuelos, O., Casqueiro, J., Fierro, F., Hijarrubia, M.J., Gutiérrez, S., and Martín, J.F. (1999) Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene 226: 5159.
  • Bañuelos, O., Casqueiro, J., Gutiérrez, S., and Martín, J.F. (2000) Overexpression of the lys1 gene in Penicillium chrysogenum: homocitrate synthase levels, alpha-aminoadipic acid pool and penicillin production. Appl Microbiol Biotechnol 54: 6977.
  • Barredo, J.L., Van Solingen, P., Díez, B., Álvarez, E., Cantoral, J.M., Kattevilder, A., et al. (1989) Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83: 291300.
  • Van Den Berg, M.A. (2001) Method for enhancing secretion of beta-lactam transport. PCT patent WO 2001/32904.
  • Van Den Berg, M.A., Westerlaken, I., Leeflang, C., Kerkman, R., and Bovenberg, R.A.L. (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin 54-1255. Fungal Genet Biol 44: 830844.
  • Berteaux-Lecellier, V., Picard, M., Thompson-Coffe, C., Zickler, D., Panvier-Adoutte, A., and Simonet, J.M. (1995) A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81: 10431051.
  • Bhattacharjee, J.K. (1985) Alpha-aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol 12: 131151.
  • Bok, J.W., and Keller, N.P. (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3: 527535.
  • Bok, J.W., Balajee, S.A., Marr, K.A., Andes, D., Nielsen, K.F., Frisvad, J.C., and Keller, N.P. (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4: 15741582.
  • Bok, J.W., Noordermeer, D., Kale, S.P., and Keller, N.P. (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61: 16361645.
  • Brakhage, A.A. (1998) Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62: 547585.
  • Brakhage, A.A., Spröte, P., Al-Abdallah, Q., Gehrke, A., Plattner, H., and Tüncher, A. (2004) Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol 88: 4590.
  • Byford, M.F., Baldwin, J.E., Shiau, C.Y., and Schofield, C.J. (1997) The mechanisms of ACV synthetase. Chem Rev 97: 26312650.
  • Carr, L.G., Skatrud, P.L., Scheetz, M.E., Queener, S.W., and Ingolia, T.D. (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257266.
  • Casqueiro, J., Gutiérrez, S., Bañuelos, O., Fierro, F., Velasco, J., and Martín, J.F. (1998) Characterization of the lys2 gene of Penicillium chrysogenum encoding alpha-aminoadipic acid reductase. Mol Gen Genet 259: 549556.
  • Chang, L.T., McGrory, E.L., and Elander, R.P. (1990) Penicillin production by glucose-derepressed mutants of Penicillium chrysogenum. J Ind Microbiol 6: 165169.
  • Chu, Y.W., Renno, D., and Saunders, G. (1995) Detection of a protein which binds specifically to the upstream region of the pcbAB gene in Penicillium chrysogenum. Curr Genet 28: 184186.
  • Coque, J.J.R., Liras, P., Láiz, L., and Martín, J.F. (1991) A gene encoding lysine 6-aminotransferase, which forms the β-lactam precursor α-aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. J Bacteriol 173: 62586264.
  • Demain, A.L., Martín, J.F., and Elander, R.P. (1998) Penicillin biochemistry and genetics. In Penicillin, a Paradigm for Biotechnology. Mateles, R.I. (ed.). Chicago, IL, USA: Candida, pp. 93113.
  • Díez, B., Gutiérrez, S., Barredo, J.L., Van Solingen, P., Van Der Voort, L.H.M., and Martín, J.F. (1990) The cluster of penicillin biosynthetic genes. J Biol Chem 265: 1635816365.
  • Díez, B., Mellado, E., Rodríguez, M., Fouces, R., and Barredo, J.L. (1997) Recombinant microorganisms for industrial production of antibiotics. Biotechnol Bioeng 55: 216226.
  • Dotzlaf, J.E., and Yeh, W.K. (1987) Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J Bacteriol 169: 16111618.
  • Dreyer, J., Eichhorn, H., Friedlin, E., Kürnsteiner, H., and Kück, U. (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73: 34123422.
  • Ehmann, D.E., Gehring, A.M., and Walsh, C.T. (1999) Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry 38: 61716177.
  • Evers, M.E., Trip, H., Van Den Berg, M.A., Bovenberg, R.A.L., and Driessen, A.J. (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88: 111135.
  • Feng, B., Friedlin, E., and Marzluf, G.A. (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60: 44324439.
  • Feng, B., Friedlin, E., and Marzluf, G.A. (1995) Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Curr Genet 27: 351358.
  • Fierro, F., Barredo, J.L., Díez, B., Gutiérrez, S., Fernández, F.J., and Martín, J.F. (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 62006204.
  • Fierro, F., García-Estrada, C., Castillo, N.I., Rodríguez, R., Velasco-Conde, T., and Martín, J.F. (2006) Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43: 618629.
  • De La Fuente, J.L., Rumbero, A., Martín, J.A., and Liras, P. (1997) Δ-1-Piperideine-6-carboxylate dehydrogenase, a new enzyme that forms α-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. Biochem J 327: 5964.
  • García, I., Gonzalez, R., Gómez, D., and Scazzocchio, C. (2004) Chromatin rearrangements in the prnDprnB bidirectional promoter: dependence on transcription factors. Eukaryot Cell 3: 144156.
  • García-Estrada, C., Vaca, I., Lamas-Maceiras, M., and Martín, J.F. (2007) In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl Microbiol Biotechnol 76: 169182.
  • García-Estrada, C., Ullán, R.V., Velasco-Conde, T., Godio, R.P., Teijeira, F., Vaca, I., et al. (2008a) Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem J 415: 317324.
  • García-Estrada, C., Vaca, I., Fierro, F., Sjollema, K., Veenhuis, M., and Martín, J.F. (2008b) The unprocessed preprotein form IATC103S of the isopenicillin N acyltransferase is transported inside peroxisomes and regulates its self-processing. Fungal Genet Biol 45: 10431052.
  • Gledhill, L., Greaves, P.A., and Griffin, J.P. (1997) Phenylacetyl-CoA ligase from Penicillium chrysogenum. Patent IPN WO97/02349, Smithkline Beecham UK.
  • Guo, S., Evans, S.A., Wilkes, M.B., and Bhattacharjee, J.K. (2001) Novel posttranslational activation of the LYS2-encoded alpha-aminoadipate reductase for biosynthesis of lysine and site-directed mutational analysis of conserved amino acid residues in the activation domain of Candida albicans. J Bacteriol 183: 71207125.
  • Gutiérrez, S., Díez, B., Montenegro, E., and Martín, J.F. (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadiyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173: 23542365.
  • Gutiérrez, S., Velasco, J., Fernández, F.J., and Martín, J.F. (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol 174: 30563064.
  • Haas, H., and Marzluf, G.A. (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28: 177183.
  • Hettema, E.H., Distel, B., and Tabak, H.F. (1999) Import of proteins into peroxisomes. Biochim Biophys Acta 1451: 1734.
  • Ishida, C., Aranda, C., Valenzuela, L., Riego, L., Deluna, A., Recillas-Targa, F., et al. (2006) The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae. Mol Microbiol 59: 17901806.
  • Jaklitsch, W.M., and Kubicek, C.P. (1990) Homocitrate synthase from Penicillium chrysogenum. Localization, purification of the cytosolic isoenzyme, and sensitivity to lysine. Biochem J 269: 247253.
  • Jayatilake, S., Huddleston, J.A., and Abraham, E.P. (1981) Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium. Biochem J 194: 645647.
  • Jekosch, K., and Kück, U. (2000) Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54: 556563.
  • Van De Kamp, M., Driessen, A.J., and Konings, W.N. (1999) Compartmentalization and transport in beta-lactam antibiotic biosynthesis by filamentous fungi. Antonie Van Leeuwenhoek 75: 4178.
  • Keller, N.P., Turner, G., and Bennett, J.W. (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3: 937947.
  • Keszenman-Pereyra, D., Lawrence, S., Twfieg, M.E., Price, J., and Turner, G. (2003) The npgA/cfwA gene encodes a putative 4′-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr Genet 43: 186190.
  • Kiel, J.A, and Van Der Klei, I.J. (2009) Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans. Fungal Genet Biol 46: S6271.
  • Kiel, J.A., Van Der Klei, I.J., Van Den Berg, M.A., Bovenberg, R.A.L., and Veenhuis, M. (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol 42: 154164.
  • Kiel, J.A., Van Den Berg, M.A., Fusetti, F., Poolman, B., Bovenberg, R.A.L., Veenhuis, M., and Van Der Klei, I.J. (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9: 167184.
  • Kikuma, T., Ohneda, M., Arioka, M., and Kitamoto, K. (2006) Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell 5: 13281336.
  • Kim, C.F., Lee, S.K., Price, J., Jack, R.W., Turner, G., and Kong, R.Y. (2003) Cloning and expression analysis of the pcbAB–pcbC beta-lactam genes in the marine fungus Kallichroma tethys. Appl Environ Microbiol 69: 13081314.
  • Kim, H., Han, K., Kim, K., Han, D., Jahng, K., and Chae, K. (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37: 7280.
  • Kionka, C., and Kunau, W.H. (1985) Inducible beta-oxidation pathway in Neurospora crassa. J Bacteriol 161: 153157.
  • Klionsky, D.J., Herman, P.K., and Emr, S.D. (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54: 266292.
  • Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr, Emr, S.D., Sakai, Y., Sandoval, I.V., et al. (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5: 539545.
  • Kosalková, K., Marcos, A.T., Fierro, F., Hernando-Rico, V., Gutiérrez, S., and Martín, J.F. (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275: 24232430.
  • Kosalková, K., Rodríguez-Sáiz, M., Barredo, J.L., and Martín, J.F. (2007) Binding of the PTA1 transcriptional activator to the divergent promoter region of the first two genes of the penicillin pathway in different penicillium species. Curr Genet 52: 229237.
  • Kosalková, K., García-Estrada, C., Ullán, R.V., Godio, R.P., Feltrer, R., Teijeira, F., et al. (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214225.
  • Kubicek, C.P., Hönlinger, C.H., Jaklitsch, W.M., Affenzeller, K., Mach, R., Gerngross, T.U., and Ying, L. (1990) Regulation of lysine biosynthesis in the fungus Penicillium chrysogenum. In Amino Acids: Chemistry, Biology and Medicine. Lubec, G., and Rozenthal, G.A. (eds). Leiden, the Netherlands: ESCOM, Science Publishers B.V., pp. 10291034.
  • Kubicek-Pranz, E.M., and Kubicek, C.P. (1991) Production and biosynthesis of amino acids by fungi. In Handbook of Applied Mycology Vol. 4: Fungal Biotechnology. Arora, D.K., Elander, R.P., and Mukerji, K.G. (eds). New York: Marcel Dekker, pp. 313356.
  • Kurylowicz, W., Kurzatkowski, W., and Kurzatkowski, J. (1987) Biosynthesis of benzylpenicillin by Penicillium chrysogenum and its Golgi apparatus. Arch Immunol Ther Exp 35: 699724.
  • Laich, F., Fierro, F., Cardoza, R.E., and Martín, J.F. (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65: 12361240.
  • Laich, F., Fierro, F., and Martín, J.F. (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68: 12111219.
  • Laich, F., Fierro, F., and Martín, J.F. (2003) Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products. Mycol Res 107: 110.
  • Lamas-Maceiras, M., Vaca, I., Rodríguez, E., Casqueiro, J., and Martín, J.F. (2006) Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N acyltransferase. Biochem J 395: 147155.
  • Lambalot, R.H., Gehring, A.M., Flugel, R.S., Zuber, P., LaCelle, M., Marahiel, M.A., et al. (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3: 923936.
  • Van Der Lende, T.R., Van De Kamp, M., Berg, M., Sjollema, K., Bovenberg, R.A.L., Veenhuis, M., et al. (2002) Delta-(l-alpha-Aminoadipyl)-l-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37: 4955.
  • Lendenfeld, T., Ghali, D., Wolschek, M., Kubicek-Pranz, E.M., and Kubicek, C.P. (1993) Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J Biol Chem 268: 665671.
  • Li, S., Myung, K., Guse, D., Donkin, B., Proctor, R.H., Grayburn, W.S., and Calvo, A.M. (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62: 14181432.
  • Liras, P., and Martín, J.F. (2009) β-Lactam antibiotics. In Encyclopedia of Microbiology, 3rd edn. Schaechter, M. (ed). Oxford, UK: Elsevier, pp. 274289.
  • Liras, P., Rodríguez-García, A., and Martín, J.F. (1998) Evolution of the clusters of genes for β-lactam antibiotics: a model for evolutive combinatorial assembling of new β-lactams. Int Microbiol 1: 271278.
  • Liu, G., Casqueiro, J., Bañuelos, O., Cardoza, R.E., Gutiérrez, S., and Martín, J.F. (2001) Targeted inactivation of the mecIB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol 183: 17651772.
  • Lübbe, C., Wolfe, S., and Demain, A.L. (1986) Isopenicillin N epimerase activity in a high cephalosporin-producing strain of Cephalosporium acremonium. Appl Microbiol Biotechnol 23: 367368.
  • Marquez-Fernandez, O., Trigos, A., Ramos-Balderas, J.L., Viniegra-Gonzalez, G., Deising, H.B., and Aguirre, J. (2007) Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell 6: 710720.
  • Martín, J.F. (2000a) α-Aminoadipyl-cysteinyl-valine synthetases in β-lactam producing organisms. From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot 53: 10081021.
  • Martín, J.F. (2000b) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182: 23552362.
  • Martín, J.F., and Demain, A.L. (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol 20: 1250212507.
  • Martín, J.F., Casqueiro, J., Kosalková, K., Marcos, A.T., and Gutiérrez, S. (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek 75: 2131.
  • Martín de Valmaseda, E.M., Campoy, S., Naranjo, L., Casqueiro, J., and Martín, J.F. (2005) Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Mol Genet Genomics 274: 272282.
  • Matsuda, A., Sugiura, H., Matsuyama, K., Matsumoto, H., Ichikawa, S., and Komatsu, K. (1992) Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase from Acremonium chrysogenum. Biochem Biophys Res Commun 186: 4046.
  • Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., et al. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24: 841847.
  • Müller, W.H., Van Der Krift, T.P., Krouwer, A.J., Wösten, H.A., Van Der Voort, L.H., Smaal, E.B., and Verkleij, A.J. (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10: 489495.
  • Müller, W.H., Bovenberg, R.A.L., Groothuis, M.H., Kattevilder, F., Smaal, E.B., Van der Voort, L.H., and Verkleij, A.J. (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116: 210213.
  • Müller, W.H., Essers, J., Humbel, B.M., and Verkleij, A.J. (1995) Enrichment of Penicillium chrysogenum microbodies by isopycnic centrifugation in nycodenz as visualized with immuno-electron microscopy. Biochim Biophys Acta 1245: 215220.
  • Naranjo, L., Martín de Valmaseda, E., Bañuelos, O., López, P., Riaño, J., Casqueiro, J., and Martín, J.F. (2001) The conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183: 71657172.
  • Nijland, J.G., Kovalchuk, A., Van Den Berg, M.A., Bovenberg, R.A.L., and Driessen, A.J. (2008) Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 45: 14151421.
  • Nishida, H., and Nishiyama, M. (2000) What is characteristic of fungal lysine synthesis through the alpha-aminoadipate pathway? J Mol Evol 51: 299302.
  • Öster, L.M., Lester, D.R., Terwisscha van Scheltinga, A., Svenda, M., Van Lun, M., Généreux, C., and Andersson, I. (2006) Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus. J Mol Biol 358: 546558.
  • Pinan-Lucarré, B., Paoletti, M., Dementhon, K., Coulary-Salin, B., and Clavé, C. (2003) Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47: 321333.
  • Pinan-Lucarré, B., Balguerie, A., and Clavé, C. (2005) Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 4: 17651774.
  • Purdue, P.E., and Lazarow, P.B. (2001) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17: 701752.
  • Rachubinski, R.A., and Subramani, S. (1995) How proteins penetrate peroxisomes. Cell 83: 525528.
  • Ramos, F.R., López-Nieto, M.J., and Martín, J.F. (1985) Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N. Antimicrob Agents Chemother 27: 380387.
  • Reumann, S. (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135: 783800.
  • Richie, D.L., Fuller, K.K., Fortwendel, J., Miley, M.D., McCarthy, J.W., Feldmesser, M., et al. (2007) Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell 6: 24372447.
  • Roach, P.L., Clifton, I.J., Fülöp, V., Harlos, K., Barton, G.J., Hajdu, J., et al. (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375: 700704.
  • Roach, P.L., Clifton, I.J., Hensgens, C.M., Shibata, N., Schofield, C.J., Hajdu, J., and Baldwin, J.E. (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387: 827830.
  • Rodríguez-Sáiz, M., Barredo, J.L., Moreno, M.A., Fernández-Cañón, J.M., Peñalva, M.A., and Díez, B. (2001) Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol 183: 54655471.
  • Rottensteiner, H., Kramer, A., Lorenzen, S., Stein, K., Landgraf, C., Volkmer-Engert, R., and Erdmann, R. (2004) Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell 15: 34063417.
  • Sakai, Y., Oku, M., Van Der Klei, I.J., and Kiel, J.A. (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763: 17671775.
  • Samsom, S.M., Belagaje, R., Blankenship, D.T., Chapman, J.L., Perry, D., Skatrud, P.L., et al. (1985) Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191194.
  • Samsom, S.M., Dotzlaf, J.F., Slisz, M.L., Becker, G.W., Van Frank, R.M., Veal, L.E., et al. (1987) Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology 5: 12071214.
  • Sawada, Y., Baldwin, J.E., Singh, P.D., Solomon, N.A., and Demain, A.L. (1980) Cell-free cyclization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N. Antimicrob Agents Chemother 18: 465470.
  • Scheidegger, A., Küenzi, M.T., and Nüesch, J. (1984) Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium. J Antibiot 37: 522531.
  • Schmitt, E.K., Kempken, R., and Kück, U. (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA–protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics 265: 508518.
  • Schmitt, E.K., Bunse, A., Janus, D., Hoff, B., Friedlin, E., Kürnsteiner, H., and Kück, U. (2004a) Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. Eukaryot Cell 3: 121134.
  • Schmitt, E.K., Hoff, B., and Kück, U. (2004b) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88: 143.
  • Shwab, E.K., Bok, J.W., Tribus, M., Galehr, J., Graessle, S., and Keller, N.P. (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6: 16561664.
  • Sugui, J.A., Pardo, J., Chang, Y.C., Müllbacher, A., Zarember, K.A., Galvez, E.M., et al. (2007) Role of laeA in the regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryot Cell 6: 15521561.
  • Teijeira, F., Ullán, R.V., Guerra, S.M., García-Estrada, C., Vaca, I., Casqueiro, J., and Martín, J.F. (2009) The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418: 113124.
  • Thieringer, R., and Kunau, W.H. (1991a) Beta-oxidation system of the filamentous fungus Neurospora crassa. Structural characterization of the trifunctional protein. J Biol Chem 266: 1311813123.
  • Thieringer, R., and Kunau, W.H. (1991b) The beta-oxidation system in catalase-free microbodies of the filamentous fungus Neurospora crassa. Purification of a multifunctional protein possessing 2-enoyl-CoA hydratase, l-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase activities. J Biol Chem 266: 1311013117.
  • Tobin, M.B., Fleming, M.D., Skatrud, P.L., and Miller, J.R. (1990) Molecular characterization of the acyl-coenzyme A: isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in E. coli. J Bacteriol 172: 59085914.
  • Tobin, M.B., Baldwin, J.E., Cole, S.C.J., Miller, J.R., Skatrud, P.L., and Sutherland, J.D. (1993) The requirement for subunit interaction in the production of Penicillium chrysogenum acyl-conenzyme A: isopenicillin N acyltransferase in Escherichia coli. Gene 132: 199206.
  • Trip, H., Evers, M.E., Kiel, J.A., and Driessen, A.J. (2004) Uptake of the beta-lactam precursor alpha-aminoadipic acid in Penicillium chrysogenum is mediated by the acidic and the general amino acid permease. Appl Environ Microbiol 70: 47754783.
  • Turgay, K., Krause, M., and Marahiel, M.A. (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate forming enzymes. Mol Microbiol 6: 529546.
  • Ullán, R.V., Casqueiro, J., Bañuelos, O., Fernández, F.J., Gutiérrez, S., and Martín, J.F. (2002a) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277: 4621646225.
  • Ullán, R.V., Liu, G., Casqueiro, J., Gutiérrez, S., Bañuelos, O., and Martín, J.F. (2002b) The cefT gene of Acremonium chrysogenum C10 encodes a multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267: 673683.
  • Ullán, R.V., Campoy, S., Casqueiro, J., Fernández, F.J., and Martín, J.F. (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem Biol 14: 329339.
  • Ullán, R.V., Teijeira, F., and Martín, J.F. (2008) Expression of the Acremonium chrysogenum cefT gene in Penicillium chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Curr Genet 54: 153161.
  • Valenciano, S., Lucas, J.R., Pedregosa, A., Monistrol, I.F., and Laborda, F. (1996) Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166: 336341.
  • Valenciano, S., De Lucas, J.R., Van der Klei, I., Veenhuis, M., and Laborda, F. (1998) Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy. Arch Microbiol 170: 370376.
  • Van den Berg, M.A., Albang, R., Albermann, K., Badger, J.H., Daran, J.M., Driessen, A.J.M., et al. (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26: 11611168.
  • Veenstra, A.E., Van Solingen, P., Huininga-Muurling, H., Koekman, B.P., Groenen, M.A.M., Smaal, E.B., et al. (1989) Cloning of penicillin biosynthesic genes. In Genetics and Molecular Biology of Industrial Microorganisms. Hershberger, C.L., Queener, S.W., and Hegeman, G. (eds). Washington, DC, USA: American Society for Microbiology, pp. 262269.
  • Velasco, J., Gutierrez, S., Fernández, F.J., Marcos, A.T., Arenos, C., and Martín, J.F. (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol 176: 985991.
  • Velasco, J., Gutiérrez, S., Campoy, S., and Martín, J.F. (1999) Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J 337: 379385.
  • Wang, F.Q., Liu, J., Dai, M., Ren, Z.H., Su, C.Y., and He, J.G. (2007) Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun 360: 453458.
  • Whiteman, P.A., Abraham, E.P., Baldwin, J.E., Fleming, M.D., Schofield, C.J., Sutherland, J.D., and Willis, A.C. (1990) Acyl coenzyme A: 6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS Lett 262: 342344.
  • Wu, X.B., Fan, K.Q., Wang, Q.H., and Yang, K.Q. (2005) C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol Lett 246: 103110.
  • Yorimitsu, T., and Klionsky, D.J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 2: 15421552.
  • Zabriskie, T.M., and Jackson, M.D. (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17: 8597.
  • Zhang, J., and Demain, A.L. (1992) ACV synthetase. Crit Rev Biotechnol 12: 245260.