SEARCH

SEARCH BY CITATION

References

  • Aeckersberg, F., Rainey, F.A., and Widdel, F. (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170: 361369.
  • Anders, H.J., Kaetzke, A., Kampfer, P., Ludwig, W., and Fuchs, G. (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45: 327333.
  • Baer, S.H., Blaschek, H.P., and Smith, T.L. (1987) Effect of butanol challenge and temperature on lipid-composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53: 28542861.
  • Van Beelen, P. (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53: 795808.
  • Bernal, P., Segura, A., and Ramos, J.L. (2007) Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol 9: 16581664.
  • Bligh, E.G., and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911917.
  • Caccavo, F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., and McInerney, M.J. (1994) Geobacter sulfurreducens sp-nov, a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60: 37523759.
  • Cronan, J.E. (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5: 202205.
  • Dowling, N.J.E., Widdel, F., and White, D.C. (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J Gen Microbiol 132: 18151825.
  • Duldhardt, I., Nijenhuis, I., Schauer, F., and Heipieper, H.J. (2007) Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria. Appl Microbiol Biotechnol 77: 705711.
  • Ennik-Maarsen, K.A., Louwerse, A., Roelofsen, W., and Stams, A.J.M. (1998) Influence of monochlorophenols on methanogenic activity in granular sludge. Water Res 32: 29772982.
  • Evans, P.J., Mang, D.T., Kwang Shin, K., and Young, L.Y. (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57: 11391145.
  • Griebler, C., Safinowski, M., Vieth, A., Richnow, H.H., and Meckenstock, R.U. (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38: 617631.
  • Hazel, J.R., and Williams, E.E. (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29: 167227.
  • Heipieper, H.J., and De Bont, J.A.M. (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of the fatty acid composition of membranes. Appl Environ Microbiol 60: 44404444.
  • Heipieper, H.J., Diefenbach, R., and Keweloh, H. (1992) Conversion of cis-unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58: 18471852.
  • Heipieper, H.J., Loffeld, B., Keweloh, H., and De Bont, J.A.M. (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30: 10411051.
  • Heipieper, H.J., Neumann, G., Cornelissen, S., and Meinhardt, F. (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74: 961973.
  • Herrero, A.A., Gomez, R.F., and Roberts, M.F. (1982) Ethanol-induced changes in the membrane lipid-composition of Clostridium thermocellum. Biochim Biophys Acta 693: 195204.
  • Ingram, L.O. (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125: 670678.
  • Ingram, L.O. (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33: 12331236.
  • Kabelitz, N., Santos, P.M., and Heipieper, H.J. (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220: 223227.
  • Kaneda, T. (1991) Iso-fatty and anteiso-fatty acids in bacteria – biosynthesis, function, and taxonomic significance. Microbiol Rev 55: 288302.
  • Keweloh, H., and Heipieper, H.J. (1996) Trans unsaturated fatty acids in bacteria. Lipids 31: 129137.
  • Konneke, M., and Widdel, F. (2003) Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol 5: 10641070.
  • Lepage, C., Fayolle, F., Hermann, M., and Vandecasteele, J.P. (1987) Changes in membrane lipid composition of Clostridium acetobutylicum during acetone butanol fermentation – effects of solvents, growth temperature and pH. J Gen Microbiol 133: 103110.
  • Lovley, D.R. (2001) Bioremediation – anaerobes to the rescue. Science 293: 14441446.
  • Lovley, D.R. (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1: 3544.
  • Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., and Goodwin, S. (1993) Geobacter metallireducens gen nov sp nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159: 336344.
  • Methe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., et al. (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302: 19671969.
  • Morrison, W.R., and Smith, L.M. (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5: 600608.
  • Segura, A., Duque, E., Mosqueda, G., Ramos, J.L., and Junker, F. (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1: 191198.
  • Sikkema, J., De Bont, J.A., and Poolman, B. (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269: 80228028.
  • Sikkema, J., De Bont, J.A., and Poolman, B. (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201222.
  • Sinensky, M. (1974) Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71: 522525.
  • Stieb, M., and Schink, B. (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151: 126132.
  • Taylor, J., and Parkes, R.J. (1983) The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp, Desulfobulbus sp and Desulfovibrio desulfuricans. J Gen Microbiol 129: 33033309.
  • Trautwein, K., Kuhner, S., Wohlbrand, L., Halder, T., Kuchta, K., Steinbuchel, A., and Rabus, R. (2008) Solvent stress response of the denitrifying bacterium ‘Aromatoleum aromaticum’ strain EbN1. Appl Environ Microbiol 74: 22672274.
  • Tschech, A., and Fuchs, G. (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148: 213217.
  • Unell, M., Kabelitz, N., Jansson, J.K., and Heipieper, H.J. (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266: 138143.
  • Wang, F.Q., Kashket, S., and Kashket, E.R. (2005) Maintenance of delta pH by a butanol-tolerant mutant of Clostridium beijerinckii. Microbiology 151: 607613.
  • Weber, F.J., and De Bont, J.A.M. (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286: 225245.