SEARCH

SEARCH BY CITATION

References

  • Abachin, E., Poyart, C., Pellegrini, E., Milohanic, E., Fiedler, F., Berche, P., and Trieu-Cuot, P. (2002) Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 114.
  • Altena, K., Guder, A., Cramer, C., and Bierbaum, G. (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66: 25652571.
  • Breukink, E., Van Kraaij, C., Demel, R.A., Siezen, R.J., Kuipers, O.P., and De Kruijff, B. (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36: 69686976.
  • Breukink, E., Wiedemann, I., Van Kraaij, C., Kuipers, O.P., Sahl, H., and De Kruijff, B. (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 23612364.
  • Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., and Sahl, H.G. (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30: 317327.
  • Castiglione, F., Lazzarini, A., Carrano, L., Corti, E., Ciciliato, I., Gastaldo, L., et al. (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15: 2231.
  • Chatterjee, C., Paul, M., Xie, L., and Van Der Donk, W.A. (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105: 633684.
  • Chatterjee, C., Patton, G.C., Cooper, L., Paul, M., and Van Der Donk, W.A. (2006) Engineering dehydro amino acids and thioethers into peptides using lacticin 481 synthetase. Chem Biol 13: 11091117.
  • Cooper, L.E., McClerren, A.L., Chary, A., and Van Der Donk, W.A. (2008) Structure-activity relationship studies of the two-component lantibiotic haloduracin. Chem Biol 15: 10351045.
  • Cotter, P.D., Hill, C., and Ross, R.P. (2003) A food-grade approach for functional analysis and modification of native plasmids in Lactococcus lactis. Appl Environ Microbiol 69: 702706.
  • Cotter, P.D., Hill, C., and Ross, R.P. (2005a) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6: 6175.
  • Cotter, P.D., Hill, C., and Ross, R.P. (2005b) Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3: 777788.
  • Cotter, P.D., O'Connor, P.M., Draper, L.A., Lawton, E.M., Deegan, L.H., Hill, C., and Ross, R.P. (2005c) Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc Natl Acad Sci USA 102: 1858418589.
  • Cotter, P.D., Deegan, L.H., Lawton, E.M., Draper, L.A., O'Connor, P.M., Hill, C., and Ross, R.P. (2006) Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 62: 735747.
  • Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M., and Bienert, M. (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501: 146150.
  • Field, D., Collins, B., Cotter, P.D., Hill, C., and Ross, R.P. (2007) A system for the random mutagenesis of the two-peptide lantibiotic lacticin 3147: analysis of mutants producing reduced antibacterial activities. J Mol Microbiol Biotechnol 13: 226234.
  • Field, D., Connor, P.M., Cotter, P.D., Hill, C., and Ross, R.P. (2008) The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69: 218230.
  • Galvin, M., Hill, C., and Ross, R.P. (1999) Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett Appl Microbiol 28: 355358.
  • Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., Kuipers, O.P., et al. (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313: 16361637.
  • Herbert, S., Bera, A., Nerz, C., Kraus, D., Peschel, A., Goerke, C., et al. (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3: e102.
  • Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., and Nes, I.F. (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147: 643651.
  • Hyde, A.J., Parisot, J., McNichol, A., and Bonev, B.B. (2006) Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci USA 103: 1989619901.
  • Hyink, O., Balakrishnan, M., and Tagg, J.R. (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252: 235241.
  • Jung, G. (1991) Lantibiotics-ribosomally synthesized biologically active polypeptides containing sulfide bridges and alpha,beta-didehydroamino acids. Angewandte Chemie (Int Ed Engl) 30: 10511192.
  • Kovacs, M., Halfmann, A., Fedtke, I., Heintz, M., Peschel, A., Vollmer, W., et al. (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188: 57975805.
  • Kramer, N.E., Van Hijum, S.A., Knol, J., Kok, J., and Kuipers, O.P. (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50: 17531761.
  • Kristian, S.A., Datta, V., Weidenmaier, C., Kansal, R., Fedtke, I., Peschel, A., et al. (2005) D-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187: 67196725.
  • Kuipers, O.P., Rollema, H.S., Yap, W.M., Boot, H.J., Siezen, R.J., and De Vos, W.M. (1992) Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J Biol Chem 267: 2434024346.
  • Kuipers, O.P., Bierbaum, G., Ottenwalder, B., Dodd, H.M., Horn, N., Metzger, J., et al. (1996) Protein engineering of lantibiotics. Antonie Van Leeuwenhoek 69: 161169.
  • Law, J., Buist, G., Haandrikman, A., Kok, J., Venema, G., and Leenhouts, K. (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177: 70117018.
  • Lawton, E.M., Cotter, P.D., Hill, C., and Ross, R.P. (2007a) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267: 6471.
  • Lawton, E.M., Ross, R.P., Hill, C., and Cotter, P.D. (2007b) Two-peptide lantibiotics: a medical perspective. Mini Rev Med Chem 7: 12361247.
  • McAuliffe, O., Hill, C., and Ross, R.P. (2000) Each peptide of the two-component lantibiotic lacticin 3147 requires a separate modification enzyme for activity. Microbiology 146: 21472154.
  • McClerren, A.L., Cooper, L.E., Quan, C., Thomas, P.M., Kelleher, N.L., and Van Der Donk, W.A. (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103: 1724317248.
  • Martin, N.I., Sprules, T., Carpenter, M.R., Cotter, P.D., Hill, C., Ross, R.P., and Vederas, J.C. (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43: 30493056.
  • Morgan, S.M., O'Connor, P.M., Cotter, P.D., Ross, R.P., and Hill, C. (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49: 26062611.
  • Navaratna, M.A., Sahl, H.G., and Tagg, J.R. (1998) Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64: 48034808.
  • O'Connor, E.B., Cotter, P.D., O'Connor, P., O'Sullivan, O., Tagg, J.R., Ross, R.P., and Hill, C. (2007) Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity. BMC Microbiol 7: 24.
  • Pag, U., and Sahl, H.G. (2002) Multiple activities in lantibiotics–models for the design of novel antibiotics?. Curr Pharm Des 8: 815833.
  • Parisot, J., Carey, S., Breukink, E., Chan, W.C., Narbad, A., and Bonev, B. (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52: 612618.
  • Patton, G.C., Paul, M., Cooper, L.E., Chatterjee, C., and Van Der Donk, W.A. (2008) The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47: 73427351.
  • Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., and Gotz, F. (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274: 84058410.
  • Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., et al. (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193: 10671076.
  • Poyart, C., Pellegrini, E., Marceau, M., Baptista, M., Jaubert, F., Lamy, M.C., and Trieu-Cuot, P. (2003) Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49: 16151625.
  • Rink, R., Wierenga, J., Kuipers, A., Kluskens, L.D., Driessen, A.J., Kuipers, O.P., and Moll, G.N. (2007) Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Environ Microbiol 73: 58095816.
  • Rollema, H.S., Kuipers, O.P., Both, P., De Vos, W.M., and Siezen, R.J. (1995) Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol 61: 28732878.
  • Ross, K.F., Ronson, C.W., and Tagg, J.R. (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 2. Appl Environ Microbiol 59: 20142021.
  • Ryan, M.P., Rea, M.C., Hill, C., and Ross, R.P. (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62: 612619.
  • Sahl, H.G., Pag, U., Bonness, S., Wagner, S., Antcheva, N., and Tossi, A. (2005) Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 77: 466475.
  • Sashihara, T., Kimura, H., Higuchi, T., Adachi, A., Matsusaki, H., Sonomoto, K., and Ishizaki, A. (2000) A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 64: 24202428.
  • Smith, L., Hasper, H., Breukink, E., Novak, J., Cerkasov, J., Hillman, J.D., et al. (2008) Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry 47: 33083314.
  • Szekat, C., Jack, R.W., Skutlarek, D., Farber, H., and Bierbaum, G. (2003) Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 69: 37773783.
  • Thedieck, K., Hain, T., Mohamed, W., Tindall, B.J., Nimtz, M., Chakraborty, T., et al. (2006) The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 62: 13251339.
  • Van Kraaij, C., Breukink, E., Rollema, H.S., Siezen, R.J., Demel, R.A., De Kruijff, B., and Kuipers, O.P. (1997) Influence of charge differences in the C-terminal part of nisin on antimicrobial activity and signaling capacity. Eur J Biochem 247: 114120.
  • Wiedemann, I., Breukink, E., Van Kraaij, C., Kuipers, O.P., Bierbaum, G., De Kruijff, B., and Sahl, H.G. (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276: 17721779.
  • Wiedemann, I., Bottiger, T., Bonelli, R.R., Wiese, A., Hagge, S.O., Gutsmann, T., et al. (2006) The mode of action of the lantibiotic lacticin 3147–a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61: 285296.
  • Willey, J.M., and Van Der Donk, W.A. (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61: 477501.
  • Xie, L., Miller, L.M., Chatterjee, C., Averin, O., Kelleher, N.L., and Van Der Donk, W.A. (2004) Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303: 679681.
  • Xie, L., and Van Der Donk, W.A. (2004) Post-translational modifications during lantibiotic biosynthesis. Curr Opin Chem Biol 8: 498507.
  • Yonezawa, H., and Kuramitsu, H.K. (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49: 541548.
  • Yuan, J., Zhang, Z.Z., Chen, X.Z., Yang, W., and Huan, L.D. (2004) Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl Microbiol Biotechnol 64: 806815.