• Open Access

Functionalization of whole-cell bacterial reporters with magnetic nanoparticles

Authors

  • Dayi Zhang,

    1. Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
    Search for more papers by this author
    • The authors contribute equally to this work.

  • Rawil F. Fakhrullin,

    1. Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
    2. Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel buye) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan.
    3. Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
    Search for more papers by this author
    • The authors contribute equally to this work.

  • Mustafa Özmen,

    1. Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
    2. Selcuk University, Science Faculty, Department of Chemistry, 42075 Campus, Konya, Turkey.
    Search for more papers by this author
  • Hui Wang,

    1. Centre for Ecology and Hydrology, Oxford, Mansfield Road, Oxford OX1 3SR, UK.
    Search for more papers by this author
  • Jian Wang,

    1. Beijing Genomics Institute (BGI)-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.
    Search for more papers by this author
  • Vesselin N. Paunov,

    1. Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
    Search for more papers by this author
  • Guanghe Li,

    1. Department of Environmental Science & Engineering, Tsinghua University, Beijing 100084, China.
    Search for more papers by this author
  • Wei E. Huang

    Corresponding author
    1. Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
    Search for more papers by this author

E-mail w.huang@shef.ac.uk; Tel. (+44) 114 2225796; Fax (+44) 114 2225701.

Summary

We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs-functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi-quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs-functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment.

Ancillary