SEARCH

SEARCH BY CITATION

References

  • Amiot, M.-J., Fleuriet, A., and Macheix, J.-J. (1989) Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28: 6769.
  • Baumann, P., Moran, N.A., and Baumann, L. (2006) Bacteriocyte-associated endosymbionts of insects. In The Prokaryotes. Volume 1: Symbiotic associations, Biotechnology, Applied Microbiology. Dworkin, M., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. 403438.
  • Beard, C.B., O'Neill, S.L., Mason, P., Mandelco, L., Woese, C.R., Tesh, R.B., et al. (1992) Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol Biol 1: 123131.
  • Behar, A., Yuval, B., and Jurkevitch, E. (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly, Ceratitis capitata. Mol Ecol 14: 26372643.
  • Behar, A., Jurkevitch, E., and Yuval, B. (2008a) Bringing back the fruit into fruit fly–bacteria interactions. Mol Ecol 17: 13751386.
  • Behar, A., Yuval, B., and Jurkevitch, E. (2008b) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol 54: 13771383.
  • Behar, A., Ben-Yosef, M., Lauzon, C.R., Yuval, B., and Jurkevitch, E. (2008c) Structure and function of the bacterial community associated with the Mediterranean fruit fly. In Insect Symbiosis. Bourtzis, K., and Miller, T. (eds). Boca Raton, USA: CRC, pp. 251271.
  • Ben Ami, E., Yuval, B., and Jurkevitch, E. (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4: 2837.
  • Ben-Yosef, M., Jurkevitch, E., and Yuval, B. (2008a) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol 33: 145154.
  • Ben-Yosef, M., Behar, A., Jurkevitch, E., and Yuval, B. (2008b) Bacteria–diet interactions affect longevity in the medfly –Ceratitis capitata. J Appl Entomol 132: 690694.
  • Ben-Yosef, M., Aharon, Y., Jurkevitch, E., and Yuval, B. (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet dependent fashion. Proc R Soc Lond B Biol Sci 277: 15451552.
  • Brownlie, J.C., Cass, B.N., Riegler, M., Witsenburg, J.J., Iturbe-Ormaetxe, I., McGraw, E.A., and O'Neill, S.L. (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5: e1000368.
  • Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., and Girolami, V. (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55: 16411647.
  • Chaston, J., and Goodrich-Blair, H. (2010) Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 34: 4158.
  • Christenson, L.D., and Foote, R.H. (1960) Biology of fruit flies. Annu Rev Entomol 5: 171192.
  • Conord, C., Despres, L., Vallier, A., Balmand, S., Miquel, C., et al. (2008) Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol 25: 859868.
  • Daser, U., and Brandl, R. (1992) Microbial gut floras of 8 species of Tephritids. Biol J Linn Soc 45: 155165.
  • Dean, M.D. (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc B 273: 14151420.
  • Douglas, A. (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23: 3847.
  • Drew, R.A.I., and Lloyd, A.C. (1987) Relationship of fruit-flies (Diptera, Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am 80: 629636.
  • Drew, R.A.I., and Yuval, B. (2000) The evolution of fruit fly feeding behavior. In Fruit Flies, Phylogeny and Evolution of Behavior. Aluja, M., and Norrbom, A. (eds). Boca Raton, USA: CRC, pp. 731749.
  • Estes, A.M., Hearn, D.J., Bronstein, J.L., and Pierson, E.A. (2009) The olive fly endosymbiont, ‘Candidatus Erwinia dacicola’, switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microbiol 75: 70977106.
  • Euzeby, J. (2010) List of prokaryotic names with standing in nomenclature [WWW document]. URL http://www.bacterio.cict.fr/number.html#total.
  • Evenhuis, N.L., Pape, T., Pont, A.C., and Thompson, F.C. (2008) The Diptera Site [WWW document]. URL http://www.sel.barc.usda.gov/Diptera/tephriti/tephriti.htm.
  • Feldhaar, H., Straka, J., Krischke, M., Berthold, K., Stoll, S., Mueller, M.J., and Gross, R. (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5: 48.
  • Fitt, G.P., and Obrien, R.W. (1985) Bacteria associated with 4 species of Dacus (Diptera, Tephritidae) and their role in the nutrition of the larvae. Oecologia 67: 447454.
  • Gavriel, S., Jurkevitch, E., Gazit. Y., and Yuval, B. (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol (in press).
  • Gevers, D., Cohan, F.M., Lawrence, J.G., Spratt, B.G., Coenye, T., Feil, E.J., et al. (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733739.
  • Hagen, K.S. (1966) Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature 209: 423424.
  • Hagen, K.S., and Tassan, R.L. (1972) Exploring nutritional roles of extracellular symbiotes on the reproduction of honeydews feeding adult Chrysopids and Tephritids. In Insect and Mite Nutrition. Rodriguez, J.G. (ed.) Amsterdam: North-Holland, pp. 323351.
  • Headrick, D.H., and Goeden, R.D. (1994) Reproductive behavior of California fruit flies and the classification and evolution of Tephritidae (Diptera) mating systems. Stud Dipterol 1: 195252.
  • Hendrichs, J., Franz, G., and Rendon, P. (1995) Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J Appl Entomol 119: 371377.
  • Howard, D.J., Bush, G.L., and Breznak, J.A. (1985) The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39: 405417.
  • Kato, T. (1981) Major nitrogen compounds transported in xylem vessels from roots to top in Citrus trees. Physiol Plant 52: 275279.
  • Kaspi, R., Mossinson, S., Drezner, T., Kamensky, B., and Yuval, B. (2002) Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiol Entomol 27: 2938.
  • Klassen, W., and Curtis, C.F. (2005) History of the sterile insect technique. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dyck, V.A., Hendrichs, J., and Robinson, A.S. (eds). Dordrecht, the Netherlands: Springer, pp. 338.
  • Koukou, K., Pavlikaki, H., Kilias, G., Werren, J.H., Bourtzis, K., and Alahiotis, S.N. (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60: 8796.
  • Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., Chouaia, B., et al. (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75: 32813288.
  • Kuzina, L.V., Peloquin, J.J., Vacek, D.C, and Miller, T.A. (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Cur Microbiol 42: 290294.
  • Lauzon, C.R. (2003) Symbiotic relationships of Tephritids. In Insect Symbiosis. Bourtzis, K., and Miller, T.A. (eds). Boca Raton, FL, USA: CRC, pp. 115129.
  • Lauzon, C.R., McCombs, S.D., Potter, S.E., and Peabody, N.C. (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102: 8595.
  • Lauzon, C.R., Sjogren, R.E., Wright, S.E., and Prokopy, R.J. (1998) Attraction of Rhagoletis pomonella (Diptera : Tephritidae) flies to odor of bacteria: Apparent confinement to specialized members of Enterobacteriaceae. Environ Entomol 27: 853857.
  • Lauzon, C.R., Sjogren, R.E., and Prokopy, R.J. (2000) Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. J Chem Ecol 26: 953967.
  • Lefevre, C., Charles, H., Vallier, A., Delobel, B., Farrell, B., and Heddi, A. (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 21: 965973.
  • Liquido, N., Shinoda, L.A., and Cunningham, R.T. (1991) Host plants of the Mediterranean fruit fly (Diptera: Tephritidae): an annotated world review. Miscellaneous Publications of the Entomological Society of America, Number 77.
  • Marchini, D., Rosetto, M., Dallai, R., and Marry, L. (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera : Tephritidae). Curr Microbiol 44: 120124.
  • Martinez, A.J., Robacker, D.C., Garcia, J.A., and Esau, K.L. (1994) Laboratory and field olfactory attraction of the Mexican fruit-fly (Diptera: Tephritidae) to metabolites of bacterial species. Flo Entomol 77: 117126.
  • Mayhew, P.J. (2007) Why are there so many insect species? Biol Rev 82: 425454.
  • Mazzon, L., Piscedda, A., Simonato, M., Martinez-Sanudo, I., Squartini, A., and Girolami, V. (2008) Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis. Int J Syst Evol Microbiol 58: 12771287.
  • McCutcheon, J., and Moran, N.A. (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104: 1939219397.
  • Moran, N.A. (1996) Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93: 28732878.
  • O'Neill, S.L., and Karr, T.L. (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348: 178180.
  • Pais, R., Lohs, C., Wu, Y., Wang, J., and Aksoy, S. (2008) The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the Tsetse fly. Appl Environ Microbiol 74: 59655974.
  • Petri, L. (1909) Ricerche Sopra i Batteri Intestinali della Mosca Olearia. Roma: Memorie della Regia Stazione di Patologia Vegetale di Roma.
  • Raghu, S., Clarke, A.R., and Bradley, J. (2002) Microbial mediation of fruit fly-host plant interactions: Is the host plant the “centre of activity”? Oikos 97: 319328.
  • Rosenberg, E., Sharon, G., and Zilber-Rosenberg, I. (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11: 29592962.
  • Rossiter, M.C., Howard, D.J., and Bush, G.L. (1983) Symbiotic bacteria of Rhagoletis pomonella. In Fruit flies of economic importance. Cavalloro, R. (ed.). Balkema: CRC Press, pp.7784.
  • Ryan, D., Robards, K., and Lavee, S. (1999) Accumulation of oleuropein derivatives during olive maturation. Int J Food Sci Technol 34: 265274.
  • Ryu, J.-H., Kim, S.-H., Lee, H.-Y., Bai, J.Y., Nam, Y.-D., Bae, J.-W., et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319: 777782.
  • Sandström, J., and Pettersson, J. (1994) Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol 40: 947955.
  • Silva, F., Alcazar, A., Macedo, L.L.P., Oliveira, A.S., Macedo, F.P., Abreu, L.R., et al. (2006) Digestive enzymes during development of Ceratitis capitata (Diptera : Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochem Mol Biol 36: 561569.
  • Stammer, H.J. (1929) Die bakteriensymbiose der trypetiden (Diptera). Zoomorphology 15: 481523.
  • Tamas, I.K.L., Canback, B., Naslund, K.A., Eriksson, A.-S., Wernegreen, J.J., Sandstrom, J.P., et al. (2002) 50 Million years of genomic stasis in endosymbiotic bacteria. Science 296: 23762379.
  • Toh, H., Weiss, B.L., Perkin, S.A.H., Yamashita, A., Oshima, K., Hattori, M., and Aksoy, S. (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Gen Res 16: 149156.
  • Torsvik, V., Øvreås, L., and Thingstad, T.F. (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296: 10641066.
  • Tsitsipis, J.A. (1989) Nutrition: requirements. In Fruit Flies, Their Biology, Natural Enemies and Control, Vol. 3A. Robinson, A.S., and Hooper, G. (eds). Amsterdam, the Netherlands: Elsevier, pp. 103119.
  • Turelli, M., and Hoffmann, A.A. (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440442.
  • Wackers, F.L. (2005) Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In Plant-Provided Food for Carnivorous Insects: Protective Mutualism and Its Applications. Wackers, F.L., van Rijn, P.C.J., and Bruin, J. (eds). Cambridge, UK: Cambridge University Press, pp. 1774.
  • White, I.M., and Elson-Harris, M.M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. Wallingford, USA: CAB International.
  • Wilson, E.O. (2003) The encyclopedia of life. Trends Ecol Evol 18: 7780.
  • Yeates, D.K., and Wiegmann, B.M. (2005) Phylogeny and evolution of Diptera: recent insight and new perspective. In The Evolutionary Biology of Flies. Yeates, D.K., and Wiegmann, B.M. (eds). New York, USA: Colombia University Press, pp. 1444.
  • Zinder, D.E., and Dworkin, M. (2000) Morphological and physiological diversity. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, USA: Springer Verlag, pp. 185220.
  • Zilber-Rosenberg, E., and Rosenberg, E. (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32: 723735.