SEARCH

SEARCH BY CITATION

References

  • Akob, D.M., Mills, H.J., Gihring, T.M., Kerkhof, L., Stucki, J.W., Anastacío, A.S., et al. (2008) Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Appl Environ Microbiol 74: 31593170.
  • Alazard, D., Joseph, M., Battaglia-Brunet, F., Cayol, J.-L., and Ollivier, B. (2010) Desulfosporosinus acidophilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14: 305312.
  • Bache, B.W. (1986) Aluminium mobilization in soils and waters. J Geol Soc 143: 699706.
  • Boonstra, J., van Lier, R., Janssen, G., Dijkman, H., and Buisman, C.J.N. (1999) Biological treatment of acid mine drainage. In Process Metallurgy 9B: Biohydrometallurgy and the Environment toward the Mining of the 21st Century. Amils, R., and Ballester, A. (eds). Amsterdam, the Netherlands: Elsevier, pp. 559567.
  • Bratty, M., Lawrence, R.W., Kratochvil, D., and Marchant, P.B. (2006) Applications of biological H2S production from elemental sulfur in the treatment of heavy metal pollution including acid rock drainage. In Proceedings of the 7th International Symposium of Acid Rock Drainage (ICARD). St. Louis, MO, pp. 271281.
  • Coupland, K., and Johnson, D.B. (2004) Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology 2: 7786.
  • Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M., and Widdel, F. (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427: 829832.
  • Edwards, P., and Potter, H. (2007) The Cwm Rheidol metal mines remediation project – phase I. In Proceedings of the International Mine Water Association Symposium 2007, Water in Mining Environments. Cidu, R., and Frau, F. (eds). Cagliari, Sardinia, Italy: International Mine Water Association, pp. 181185.
  • Hallberg, K.B., Coupland, K., Kimura, S., and Johnson, D.B. (2006) Macroscopic ‘acid streamer’ growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72: 20222030.
  • Hard, B.C., Friedrich, S., and Babel, F.W. (1997) Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol Res 152: 6573.
  • Heinzel, E., Janneck, E., Glombitza, F., Schlömann, M., and Seifert, J. (2009) Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ Sci Technol 43: 61386144.
  • Jameson, E., Rowe, O.F., Hallberg, K.B., and Johnson, D.B. (2010) Sulfidogenesis and selective precipitation of metals at low pH mediated by Acidithiobacillus spp. and acidophilic sulfate reducing bacteria. Hydrometallurgy 104: 488493.
  • Johnson, D.B. (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegradation 35: 4158.
  • Johnson, D.B., and Hallberg, K.B. (2002) Pitfalls of passive mine drainage. Re/Views. Environ Biotechnol 1: 335343.
  • Johnson, D.B., and Hallberg, K.B. (2003) The microbiology of acidic mine waters. Res Microbiol 154: 466473.
  • Johnson, D.B., and Hallberg, K.B. (2005) Acid mine drainage: remediation options. Sci Total Environ 338: 314.
  • Johnson, D.B., and Hallberg, K.B. (2007) Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In Biomining. Rawlings, D.E., and Johnson, D.B. (eds). Heidelberg, Germany: Springer-Verlag, pp. 237262.
  • Kimura, S., Hallberg, K.B., and Johnson, D.B. (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 5765.
  • Koschorreck, M. (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64: 329342.
  • Lane, D.J. (1991) 16/23s rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic. Stackebrandt, E., and Goodfellow, M. (eds). New York, USA: John Wiley and Sons, pp. 113175.
  • Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., and Wade, W.G. (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795799.
  • Ňancucheo, I., and Johnson, D.B. (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76: 461467.
  • Nordstrom, D.K. (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. Int Geol Rev 42: 499515.
  • Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H. (2002) Anaerobic respiration using Fe3+, S0 and H2 in the chemolithotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184: 20812087.
  • Okibe, N., Gericke, M., Hallberg, K.B., and Johnson, D.B. (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl Environ Microbiol 69: 19361943.
  • Orphan, V.J., Taylor, L.T., Hafenbradl, D., and Delong, E.F. (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66: 700711.
  • Pott, B.-M., and Mattiasson, B. (2004) Separation of heavy metals from water solutions at the laboratory scale. Biotechnol Lett 26: 451456.
  • Pronk, J.T., Liem, K., Bos, P., and Kuenen, J.G. (1991) Energy transduction by anaerobic ferric iron reduction in Thiobacillus ferrooxidans. Appl Environ Microbiol 57: 20632068.
  • Rowe, O.F., Sánchez-España, J., Hallberg, K.B., and Johnson, D.B. (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9: 17611771.
  • Sen, A.M., and Johnson, D.B. (1999) Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage. In Process Metallurgy 9A Biohydrometallurgy and the Environment toward the Mining of the 21st Century. Amils, R., and Ballester, A. (eds). Amsterdam, the Netherlands: Elsevier, pp. 709718.
  • Senko, J.M., Zhang, G., McDonough, J.T., Bruns, M.A., and Burgos, W.D. (2009) Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol J 26: 7182.
  • Steudel, R. (2000) The chemical sulfur cycle. In Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering. Lens, P., and Hulshoff Pol, L. (eds). London, UK: International Association on Water Quality, pp. 131.
  • Wakeman, K., Auvinen, H., and Johnson, D.B. (2008) Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101: 739750.
  • Winch, S., Mills, H.J., Kostka, J.E., Fortin, D., and Lean, D.R.S. (2009) Identification of sulfate-reducing bacteria in methylmercury contaminated mine tailings by analysis of SSU ribosomal RNA genes. FEMS Microbiol Ecol 68: 94107.