SEARCH

SEARCH BY CITATION

References

  • Abdullah, M.A., Alzate, O., Mohammad, M., McNall, R.J., Adang, M.J., and Dean, D.H. (2003) Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69: 53435353.
  • Alzate, O., Osorio, C., Florez, A.M., and Dean, D.H. (2010) Participation of valine 171 in alpha-Helix 5 of Bacillus thuringiensis Cry1Ab delta-endotoxin in translocation of toxin into Lymantria dispar midgut membranes. Appl Environ Microbiol 76: 78787880.
  • Arenas, I., Bravo, A., Soberon, M., and Gomez, I. (2010) Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285: 1249712503.
  • Atsumi, S., Mizuno, E., Hara, H., Nakanishi, K., Kitami, M., Miura, N., et al. (2005) Location of the Bombyx mori aminopeptidase N type I binding site on Bacillus thuringiensis Cry1Aa toxin. Appl Environ Microbiol 71: 39663977.
  • Azzazy, H.M.E., and Highsmith, J.W.E. (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35: 425445.
  • Bagla, P. (2010) Hardy cotton-munching pests are latest blow to GM crops. Science 327: 1439.
  • Baxter, S.W., Badenes-Pérez, F.R., Morrison, A., Vogel, H., Crickmore, N., Kain, W., et al. (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genet 189: 675679.
  • Bosch, D., Schipper, B., van der Kleij, H., de Maagd, R.A., and Stiekema, J. (1994) Recombinant Bacillus thuringiensis insecticidal proteins with new properties for resistance management. Biotechnology 12: 915918.
  • Bravo, A. (1997) Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. J Bacteriol 179: 279327801.
  • Bravo, A., and Soberón, M. (2008) How to cope with resistance to Bt toxins? Trends Biotechnol 26: 573579.
  • Bravo, A., Gill, S.S., and Soberón, M. (2005) Bacillus thuringiensis mechanisms and use. In Comprehensive Molecular Insect Science. Gilbert, L.I., Iatrou, K., and Gill, S.S. (eds). Oxford: ELSEVIER, pp. 175206.
  • Bravo, A., Likitvivatanavong, S., Gill, S.S., and Soberón, M. (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41: 423431.
  • Carrrol, J., Convents, D., Van Damme, J., Boets, A., Van Rie, J., and Ellar, D.J. (1997) Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A δ-endotoxin may facilitate its coleopteran toxicity. J Invertebr Pathol 70: 4149.
  • Craveiro, K.I., Gomes Júnior, J.E., Silva, M.C., Macedo, L.L., Lucena, W.A., Silva, M.S., et al. (2010) Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J Biotechnol 145: 215221.
  • Crickmore, N. (2000) The diversity of Bacillus thuringiensis δ-endotoxins. In Enthomopathogenic Bacteria: From Laboratory to Field Application. Charles, J.-F., Delécluse, A., and Nielsen-LeRoux, C. (eds). Dordrecht: Kluwer Academic Publishers, pp. 6579.
  • Crickmore, N., Zeigler, D., R Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., et al. (1998) Revision of the nomenclture for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 807813.
  • Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., et al. (2011) Bacillus thuringiensis toxin nomenclature’ [WWW document]. URL http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/.
  • Droge, M.J., Ruggeberg, C.J., van der Sloot, A.M., Schimmel, J., Dijkstra, D.W., Verhaert, R.M.D., et al. (2003) Binding of phage display Bacillus subtilis lipase A to a phosphonate suicide inhibitor. J Biotechnol 101: 1928.
  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., and Koziel, M.G. (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93: 53895394.
  • Gahan, L.J., Pauchet, Y., Vogel, H., and Heckel, D.G. (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6: e1001248. doi:10.1371/journal.pgen.1001248.
  • Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S., and Dunbar, M.W. (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6: e22629.
  • Gómez, I., Dean, D.H., Bravo, A., and Soberón, M. (2003) Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops α-8 and 2 in domain II of Cy1Ab toxin. Biochem 42: 1048210489.
  • Gómez, I., Arenas, I., Benitez, I., Miranda-Ríos, J., Becerril, B., Grande, G., et al. (2006) Specific epitopes of Domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem 281: 3403234039.
  • Guo, C.H., Zhao, S.T., Ma, Y., Hu, J.J., Han, X.J., Chen, J., and Lu, M.Z. (2012) Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Appl Microbiol Biotechnol 93: 12491256.
  • Hibbard, B.E., Frank, D.L., Kurtz, R., Boudreau, E., Ellersieck, M.R., and Odhiambo, J.F. (2011) Mortality impact of Bt transgenic maize roots expressing eCry3.1Ab, mCry3A, and eCry3.1Ab plus mCry3A on western corn rootworm larvae in the field. J Econ Entomol 104: 15841591.
  • Ishikawa, H., Hoshino, Y., Motoki, Y., Kawahara, T., Kitajima, M., Kitami, M., et al. (2007) A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol Biotechnol 36: 90101.
  • James, C. (2010) Global Status of Commercialized Biotech/GM Crops: 2010. ISAAA Brief No. 42. ISAAA: Ithaca, NY.
  • Kasman, L.M., Lukowiak, A.A., Garcynski, S.F., McNall, R.J., Youngman, P., and Adang, M.J. (1998) Phage display of a biologically active Bacillus thuringiensis toxin. Appl Environ Microbiol 64: 29953003.
  • Knight, J.S., Broadwell, A.H., Grant, W.N., and Shoemaker, C.B. (2004) A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains. J Econ Entomol 97: 18051813.
  • Lambert, B., Höfte, H., Annys, K., Jansens, S., Soetaert, P., and Peferoen, M. (1992) Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58: 25362542.
  • Lassner, M., and Bedbrook, J. (2001) Directed molecular evolution in plant improvement. Curr Opin Plant Biol 4: 152156.
  • Liu, X.S., and Dean, D.H. (2006) Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin. Protein Eng Des Sel 19: 107111.
  • López-Pazos, S.A., Martínez, J.W., Castillo, A.X., and Cerón-Salamanca, J.A. (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae). J Invertebr Pathol 101: 242245.
  • Lv, Y., Tang, Y., Zhang, Y., Xia, L., Wang, F., Ding, X., et al. (2011) The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Curr Microbiol 62: 665670.
  • de Maagd, R.A., Weemen-Hendriks, M., Stiekema, W., and Bosch, D. (2000) Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specific determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66: 15591563.
  • de Maagd, R.A., Bravo, A., and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17: 193199.
  • Mandal, C.C., Gayen, S., Basu, A., Ghosh, K.S., Dasgupta, S., Maiti, M.K., and Sen, S.K. (2007) Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20: 599606.
  • Marzari, R., Edomi, P., Bhatnagar, R.K., Ahmad, S., Selvapandiyan, A., and Bradbury, A. (1997) Phage display of Bacillus thuringiensis CryIA(a) insecticidal toxin. FEBS Lett 411: 2731.
  • Morse, R.J., Yamamoto, T., and Stroud, R.M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409417.
  • Mullen, L.M., Nair, S.P., Ward, J.M., Rycroft, A., and Henderson, N. (2006) Phage display in the study of infectious diseases. Trends Microbiol 14: 141147.
  • Naimov, S., Weemen-Hendriks, M., Dukiandjiev, S., and de Maagd, R.A. (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl Environ Microbiol 67: 53285330.
  • Oliveira, G.R., Silva, M.C., Lucena, W.A., Nakasu, E.Y., Firmino, A.A., Beneventi, M.A., et al. (2011) Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnol 9: 1185.
  • Pacheco, S., Gómez, I., Sato, R., Bravo, A., and Soberón, M. (2006) Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. J Invertebr Pathol 92: 4549.
  • Pacheco, S., Gomez, I., Arenas, I., Saab-Rincon, G., Rodriguez-Almazan, C., Gill, S.S., et al. (2009) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a ‘ping-pong’ binding mechanism with Manduca sexta aminopetidase-N and cadherin receptors. J Biol Chem 284: 3275032757.
  • Pardo-López, L., Muñoz-Garay, C., Porta, H., Rodríguez-Almazán, C., Soberón, M., and Bravo, A. (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30: 589595.
  • Rajamohan, F., Alzate, O., Cotrill, J.A., Curtiss, A., and Dean, D.H. (1996) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci USA 93: 1433814343.
  • van Rensburg, J.B.J. (2007) First report of field resistance by stem borer Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24: 147151.
  • Sanahuja, G., Banakar, R., Twyman, R.M., Capell, T., and Christou, P. (2011) Bacillus thuringiensis: a century of research development and commercial applications. Plant Biotechnol J 9: 283300.
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J.R., Feitelson, J., et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 705806.
  • Shan, S., Zhang, Y., Ding, X., Hu, S., Sun, Y., Yu, Z., et al. (2011) A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Curr Microbiol 62: 358365.
  • Shu, C., Liu, R., Wang, R., Zhang, J., Feng, S., Huang, D., and Song, F. (2007) Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Curr Microbiol 55: 492496.
  • Soberón, M., Pardo-López, L., López, I., Gómez, I., Tabashnik, B., and Bravo, A. (2007) Engineering modified Bt toxins to counter insect resistance. Science 318: 16401642.
  • Storer, N.P., Babcock, J.M., Schlenz, M., Meade, T., Thompson, G.D., Bing, J.W., and Huckaba, R.M. (2010) Discovery and characterization of field resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103: 10311038.
  • Tabashnik, B.E., Gassman, A.J., Crowdwer, D.W., and Carriere, Y. (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26: 199202.
  • Tabashnik, B.E., Huang, F., Ghimire, M.N., Leonard, B.R., Siegfried, B.D., Randasamy, M., et al. (2011) Efficacy of genetically modified Bt toxins against insects with different mechanism of resistance. Nat Biotechnol 29: 11281131.
  • Vílchez, S., Jacoby, J., and Ellar, D.J. (2004) Display of biologically functional insecticidal toxin on the surface of λ phage. Appl Environ Microbiol 70: 65876594.
  • Walters, F.S., Stacy, C.M., Lee, M.K., Palekar, N., and Chen, J.S. (2008) An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl Environ Microbiol 74: 367374.
  • Walters, F.S., deFontes, C.M., Hart, H., Warren, G.W., and Chen, J.S. (2010) Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76: 30823088.
  • Warren, G. (1997) Vegetative insecticidal proteins: novel proteins for control of corn pests. In Advances in Insect Control: The Role of Transgenic Plants. Carozzi, N., and Koziel, M. (eds). London: Taylor & Francis, pp. 109120.
  • Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C., and Arioan, R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100: 27602765.
  • Wu, J.-Y., Zhao, F.-Q., Bai, J., Deng, G., Qin, S., and Bao, Q.-Y. (2007) Adapatative evolution of cry gene in Bacillus thuringiensis: Implications for their specificity determination. FEBS Lett 5: 102110.
  • Wu, S.J., Koller, C.N., Miller, D.L., Bauer, L.S., and Dean, D.H. (2000) Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett 473: 227232.
  • Xiang, W.F., Qiu, X.L., Zhi, D.X., Min, Z.X., Yuan, L., and Quan, Y.Z. (2009) N546 in beta18-beta19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. J Invertebr Pathol 101: 119123.
  • Zhang, X., Candas, M., Griko, N.B., Taussig, R., and Bulla, L.A., Jr (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci USA 103: 98979902.