SEARCH

SEARCH BY CITATION

References

  • Abe, F., and Horikoshi, K. (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Biol Cell 20: 80938102.
  • Amerine, M.A., and Ough, C.S. (1976) Wine and Must Analysis. Zaragoza, España: Acribia, pp. 47–54.
  • Avram, D., and Bakalinsky, A.T. (1997) SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179: 59715974.
  • Ayestarán, B., Ancín, C., García, A., González, A., and Garrido, J. (1995) Influence of prefermentation clarification on nitrogenous content of musts and wines. J Agric Food Chem 43: 476482.
  • Ayestarán, B., Garrido, J., and Ancín, C. (1998) Relation between fatty acid content and its evolution during fermentation and utilization of free amino acids in vacuum-filtered Viura must. J Agric Food Chem 46: 4248.
  • Beltrán, G., Novo, M., and Rozès, N. (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4: 625632.
  • Bischof, J.C., Padanilam, J., and Holmes, W.H. (1995) Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys J 68: 26082614.
  • Boulton, R.B., Singleton, V.L., Bisson, L.F., and Kunkee, R.E. (1996) Principles and Practices of Wine Making. New York, USA: Chapman & Hall.
  • Caridi, A. (2002) Protective agents used to reverse the metabolic changes induced in wine yeasts by concomitant osmotic and thermal stress. Lett Appl Microbiol 35: 98101.
  • Caridi, A. (2003) Effects of protectants on the fermentation performance of wine yeasts subjected to osmotic stress. Food Technol Biotechnol 41: 145148.
  • Caridi, A., Crucitti, P., Ramondino, D., Santagati, E., and Audino, P. (1999) Isolation and initial characterization of thermotolerant yeasts for oenological use. Ind Bevande 28: 247252.
  • Cartwright, C.P., Juroszek, J.R., Beaven, M.J., Ruby, F.M.S., de Morais, S.M.F., and Rose, A.H. (1986) Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J Gen Microbiol 132: 369377.
  • Cejudo-Bastante, M.J., Sonni, F., Chinnici, F., Versari, A., Perez-Coello, M.S., and Riponi, C. (2010) Fermentation of sulphite-free white musts with added lysozyme and oenological tannins: nitrogen consumption and biogenic amines composition of final wines. Food Sci Technol 43: 15011507.
  • Entian, K.D., and Barnett, J. (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17: 506510.
  • Garde-Cerdán, T., Marsellés-Fontanet, A.R., Arias-Gil, M., Martín-Belloso, O., and Ancín-Azpilicueta, C. (2007) Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chem 103: 771777.
  • Gershfeld, N.L., and Murayama, M. (1988) Thermal instability of red blood cell membrane bilayers-temperature dependence of hemolysis. J Membr Biol 101: 6772.
  • Guerzoni, M.E., Ferruzzi, M., Gardini, F., and Lanciotti, R. (1999) Combined effects of ethanol, high homogenization pressure, and temperature on cell fatty acid composition in Saccharomyces cerevisiae. Can J Microbiol 44: 805810.
  • Hazel, J.R. (1995) Thermal adaptation in biological membranes is homeoviscous adaptation the explanation. Annu Rev Physiol 57: 1942.
  • Herrero, E., Ros, J., Bellí, G., and Cabiscol, E. (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780: 12701235.
  • Ingram, L.O., Dombek, K.M., and Osman, Y.A. (1986) Microbiological tolerance to alcohols: role of the cell membrane. Trends Biotechnol 4: 4044.
  • Leáo, C., and van Uden, N. (1982) Effects of ethanol and others alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol Bioeng 24: 26012604.
  • Leáo, C., and van Uden, N. (1983) Effects of ethanol and others alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnol Bioeng 25: 20852090.
  • Leáo, C., and van Uden, N. (1984) Effects of ethanol and others alkanols on the passive proton influx in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 774: 4348.
  • Lepock, J.R., Frey, H.E., and Ritchie, K.P. (1993) Protein denaturation in intact hepatocytes and isolated cellular organelles during heat-shock. J Cell Biol 122: 12671276.
  • Llauradó, J.M., Rozès, N., Constantí, M., and Mas, A. (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agric Food Chem 53: 10031011.
  • McDonald, A.G. (1987) The role of membrane fluidity in complex processes under high pressure. In Current Perspectives in High Pressure Biology. Marquis, R.E., Zimmerman, A.M., and Jannasch, H.W. (eds). London, UK: Academic Press, pp. 207223.
  • Magasanik, B. (1992) Regulation of nitrogen utilization. In The Molecular Biology of the Yeast Saccharomyces Cerevisiae: Metabolism and Gene Expression. Strathern, J.N., Jones, E.W., and Broach, J.R. (eds). New York, USA: Cold Spring Harbor Laboratory Press, pp. 283317.
  • Maier, K., Hinze, H., and Leuschel, L. (1986) Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae. Biochim Biophys Acta 848: 120130.
  • Martin, O., Brandriss, M.C., Schneider, G., and Bakalinsky, A.T. (2003) Improved anaerobic use of arginine by Saccharomyces cerevisiae. Appl Environ Microbiol 69: 16231628.
  • Martínez de Marañón, I., Chaudanson, N., Joly, N., and Gervais, P. (1999) Slow heat rate increases yeast thermotolerance by maintaining plasma membrane integrity. Biotechnol Bioeng 65: 176181.
  • Mishra, P., and Prasad, R. (1989) Relationship between fluidity and L-alanine transport in a fatty acid auxotroph of Saccharomyces cerevisiae. Biochem Int 19: 10191030.
  • Neves, M.J., and François, J. (1992) On the mechanism by which heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288: 559564.
  • Novo, T., Beltrán, G., Rozès, N., Guillamón, J.M., and Mas, A. (2004) Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast. Appl Microbiol Biotechnol 66: 560566.
  • O'Connor-Cox, E.S.C., and Ingledew, W.M. (1989) Wort nitrogenous sources. Their use by brewing yeasts, a review. J Am Soc Brew Chem 47: 102108.
  • Park, H., and Bakalinsky, A.T. (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16: 881888.
  • Peynaud, E. (1993) Enología Práctica: Conocimiento Y Elaboración Del Vino, 1st edn. Madrid, Spain: Ediciones Mundi-Prensa.
  • Piper, P.W., Ortiz-Calderon, C., Holyoak, C., Coote, P., and Cole, M. (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2: 1224.
  • Pizarro, F.J., Jewett, M.C., Nielsen, J., and Agosin, E. (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74: 63586368.
  • Poole, K., Walker, M.E., Warren, T., Gardner, J., McBryde, C., Lopes, M.D., and Jiranek, V. (2009) Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast. J Gen Appl Microbiol 55: 427439.
  • Serrano, R. (1991) Transport across yeast vacuolar and plasma membranes. In The Molecular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis and Energeties. Strathern, J.N., Jones, E.W., and Broach, J.R. (eds). New York, USA: Cold Spring Harbor Laboratory, pp. 523585.
  • Soetens, O., de Craene, J.O., and Andre, B. (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276: 4394943957.
  • Takagi, H. (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81: 211223.