SEARCH

SEARCH BY CITATION

References

  • Ajinomoto Co. (2010) Food products business [WWW document]. URL http://www.ajinomoto.com/ir/pdf/Food-Oct2010.pdf (retrieved 27 February 2012).
  • Ajinomoto Co. (2011) Feed-use amino acids business [WWW document]. URL http://www.ajinomoto.com/ir/pdf/Feed-useAA-Oct2011.pdf (retrieved 27 February 2012).
  • Blankschien, M.D., Clomburg, J.M., and Gonzalez, R. (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12: 409419.
  • Blombach, B., Schreiner, M.E., Bartek, T., Oldiges, M., and Eikmanns, B.J. (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79: 471479.
  • Blombach, B., Riester, T., Wieschalka, S., Ziert, C., Youn, J.W., Wendisch, V.F., and Eikmanns, B.J. (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77: 33003310.
  • Bott, M., and Niebisch, A. (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104: 129153.
  • Burkovski, A. (ed.) (2008) Corynebacteria: Genomics and Molecular Biology. Norfolk, UK: Caister Academic Press.
  • Durnin, G., Clomburg, J., Yeates, Z., Alvarez, P.J., Zygourakis, K., Campbell, P., and Gonzalez, R. (2008) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103: 148161.
  • Eggeling, L., and Bott, M. (2005) Handbook of Corynebacterium glutamicum. Boca Raton, Florida, USA: CRC Press, Taylor & Francis Group.
  • Eikmanns, B.J., Follettie, M.T., Griot, M.U., and Sinskey, A.J. (1989) The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218: 330339.
  • Gonzalez, R., Murarka, A., Dharmadi, Y., and Yazdani, S.S. (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10: 234245.
  • Ikeda, M., and Nakagawa, S. (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62: 99109.
  • Inui, M., Kawaguchi, H., Murakami, S., Vertes, A.A., and Yukawa, H. (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8: 243254.
  • Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., et al. (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104: 525.
  • Kirchner, O., and Tauch, A. (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104: 287299.
  • Krause, F.S., Blombach, B., and Eikmanns, B.J. (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76: 80538061.
  • Lee, P.C., Lee, W.G., Lee, S.Y., and Chang, H.N. (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72: 4148.
  • Lin, H., Bennett, G.N., and San, K.Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7: 116127.
  • Litsanov, B., Brocker, M., and Bott, M. (2012a) Towards homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78: 33253337.
  • Litsanov, B., Kabus, M., Brocker, M., and Bott, M. (2012b) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5: 116128.
  • McKinlay, J.B., Vieille, C., and Zeikus, J.G. (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76: 727740.
  • Mimitsuka, T., Sawai, H., Hatsu, M., and Yamada, K. (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71: 21302135.
  • Moon, C., Ahn, J.H., Kim, S.W., Sang, B.I., and Um, Y. (2010) Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl Biochem Biotechnol 161: 502510.
  • Mori, M., and Shiio, I. (1985) Purification and some properties of phosphoenolpyruvate carboxylase from Brevibacterium flavum and its aspartate-overproducing mutant. J Biochem 97: 11191128.
  • Mori, M., and Shiio, I. (1987) Phosphoenol-pyruvate : sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum. Agric Biol Chem 51: 26712678.
  • Okino, S., Suda, M., Fujikura, K., Inui, M., and Yukawa, H. (2008a) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78: 449454.
  • Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., and Yukawa, H. (2008b) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81: 459464.
  • Petersen, S., de Graaf, A.A., Eggeling, L., Mollney, M., Wiechert, W., and Sahm, H. (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275: 3593235941.
  • Peters-Wendisch, P.G., Kreutzer, C., Kalinowski, J., Patek, M., Sahm, H., and Eikmanns, B.J. (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144: 915927.
  • Rittmann, D., Lindner, S.N., and Wendisch, V.F. (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74: 62166222.
  • Stäbler, N., Oikawa, T., Bott, M., and Eggeling, L. (2011) Corynebacterium glutamicum as a host for synthesis and export of d-amino acids. J Bacteriol 193: 17021709.
  • Schneider, J., and Wendisch, V.F. (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88: 859868.
  • Scholten, E., and Dagele, D. (2008) Succinic acid production by a newly isolated bacterium. Biotechnol Lett 30: 21432146.
  • Smith, K.M., Cho, K.-M., and Liao, J.C. (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87: 10451055.
  • Stolz, M., Peters-Wendisch, P., Etterich, H., Gerharz, T., Faurie, R., Sahm, H., et al. (2007) Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 73: 750755.
  • Thauer, R.K., Jungermann, K., and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100180.
  • Wendisch, V.F., Lindner, S.N., and Meiswinkel, T.M. (2011) Use of glycerol in biotechnological applications. In Biodiesel – Quality, Emissions and By-products. Montero, G., and Stoytcheva, M. (eds). Rijeka, Croatia: InTech, pp. 305341.
  • Yazdani, S.S., and Gonzalez, R. (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18: 213219.
  • Yukawa, H., Omumasaba, C.A., Nonaka, H., Kos, P., Okai, N., Suzuki, N., et al. (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 10421058.
  • Yuzbashev, T.V., Yuzbasheva, E.Y., Sobolevskaya, T.I., Laptev, I.A., Vybornaya, T.V., Larina, A.S., et al. (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107: 673682.
  • Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Environ Microbiol 51: 545552.
  • Zhang, X., Jantama, K., Shanmugam, K.T., and Ingram, L.O. (2009) Reengineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75: 78077813.
  • Zhang, X., Shanmugam, K.T., and Ingram, L.O. (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76: 23972401.