• Berdy, J. (2005) Bioactive microbial metabolites. J Antibiot 58: 126.
  • Carlson, J.C., Fortman, J.L., Anzai, Y., Li, S., Burr, D.A., and Sherman, D.H. (2010) Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Chembiochem 11: 564572.
  • Chater, K.F., Biró, S., Lee, K.J., Palmer, T., and Schrempf, H. (2010) The complex extracellular biology of Streptomyces . FEMS Microbiol Rev 34: 171198.
  • Fernández, E., Weissbach, U., Sánchez Reillo, C., Braña, A.F., Méndez, C., Rohr, J., and Salas, J.A. (1998) Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180: 49294937.
  • Gao, B., and Gupta, R.S. (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria . Microbiol Mol Biol Rev 76: 66112.
  • Gómez, C., Horna, D.H., Olano, C., Palomino-Schätzlein, M., Pineda-Lucena, A., Carbajo, R.J., et al. (2011) Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus . J Bacteriol 193: 42144223.
  • Gómez, C., Olano, C., Palomino-Schätzlein, M., Pineda-Lucena, A., Carbajo, R.J., Braña, A.F., et al. (2012) Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J Antibiot doi:10.1038/ja.2012.37 [Epub ahead of print].
  • Guillén, D., Sánchez, S., and Rodríguez-Sanoja, R. (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85: 12411249.
  • Hong, T.Y., Cheng, C.W., Huang, J.W., and Meng, M. (2002) Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan. Microbiology 148: 11511159.
  • Hong, T.Y., Hsiao, Y.Y., Meng, M., and Li, T.T. (2008) The 1.5 A structure of endo-1,3-β-glucanase from Streptomyces sioyaensis: evolution of the active-site structure for 1,3-β-glucan-binding specificity and hydrolysis. Acta Crystallogr D Biol Crystallogr 64: 964970.
  • Horna, D.H., Gómez, C., Olano, C., Palomino-Schätzlein, M., Pineda-Lucena, A., Carbajo, R.J., et al. (2011) Biosynthesis of the RNA polymerase inhibitor streptolydigin in Streptomyces lydicus: tailoring modification of 3-methyl-aspartate. J Bacteriol 193: 26472651.
  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  • McCarthy, A.J., and Williams, S.T. (1992) Actinomycetes as agents of biodegradation in the environment – a review. Gene 115: 189192.
  • Méndez, C., Braña, A.F., Manzanal, M.B., and Hardisson, C. (1985) Role of substrate mycelium in colony development in Streptomyces . Can J Microbiol 31: 446450.
  • Menéndez, N., Nur-e-Alam, M., Fischer, C., Braña, A.F., Salas, J.A., Rohr, J., and Méndez, C. (2006) Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbiol 72: 167177.
  • Mo, X., Wang, Z., Wang, B., Ma, J., Huang, H., Tian, X., et al. (2011) Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun 406: 341347.
  • Mo, X., Ma, J., Huang, H., Wang, B., Song, Y., Zhang, S., et al. (2012) C11/C12-Double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme. J Am Chem Soc 134: 28442847.
  • Olano, C., Wilkinson, B., Sánchez, C., Moss, S.J., Sheridan, R., Math, V., et al. (2004) Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol 11: 8797.
  • Olano, C., Lombó, F., Méndez, C., and Salas, J.A. (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10: 281292.
  • Olano, C., Gómez, C., Pérez, M., Palomino, M., Pineda-Lucena, A., Carbajo, R.J., et al. (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol 16: 10311044.
  • Sánchez-Hidalgo, M., Núñez, L.E., Méndez, C., and Salas, J.A. (2010) Involvement of the beta subunit of RNA polymerase in resistance to streptolydigin and streptovaricin in the producer organisms Streptomyces lydicus and Streptomyces spectabilis . Antimicrob Agents Chemother 54: 16841692.
  • Shi, P., Yao, G., Yang, P., Li, N., Luo, H., Bai, Y., et al. (2010) Cloning, characterization, and antifungal activity of an endo-1,3-β--glucanase from Streptomyces sp. S27. Appl Microbiol Biotechnol 85: 14831490.
  • Siebenberg, S., Bapat, P.M., Lantz, A.E., Gust, B., and Heide, L. (2010) Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. J Biosci Bioeng 109: 230234.
  • Singh, D., Kwon, H.J., Rajkarnikar, A., and Suh, J.W. (2007) Glucoamylase gene, vldI, is linked to validamycin biosynthesis in Streptomyces hygroscopicus var. limoneus, and vldADEFG confers validamycin production in Streptomyces lividans, revealing the role of VldE in glucose attachment. Gene 395: 151159.
  • Stach, J.E., and Bull, A.T. (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87: 39.
  • Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., et al. (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 16081615.