SEARCH

SEARCH BY CITATION

Abstract

Accumulation of life stressors predicts accelerated development and progression of diseases of aging. Telomere length, the DNA-based biomarker indicating cellular aging, is a mechanism of disease development, and is shortened in a dose response fashion by duration and severity of life stressor exposures. Telomere length captures the interplay between genetics, life experiences and psychosocial and behavioral factors. Over the past several years, psychological stress resilience, healthy lifestyle factors, and social connections have been associated with longer telomere length and it appears that these factors can protect individuals from stress-induced telomere shortening. In the current review, we highlight these findings, and illustrate that combining these ‘multisystem resiliency’ factors may strengthen our understanding of aging, as these powerful factors are often neglected in studies of aging. In naturalistic studies, the effects of chronic stress exposure on biological pathways are rarely main effects, but rather a complex interplay between adversity and resiliency factors. We suggest that chronic stress effects can be best understood by directly testing if the deleterious effects of stress on biological aging processes, in this case the cell allostasis measure of telomere shortening, are mitigated in individuals with high levels of multisystem resiliency. Without attending to such interactions, stress effects are often masked and missed. Taking account of the cluster of positive buffering factors that operate across the lifespan will take us a step further in understanding healthy aging. While these ideas are applied to the telomere length literature for illustration, the concept of multisystem resiliency might apply to aging broadly, from cellular to systemic health.