SEARCH

SEARCH BY CITATION

Keywords:

  • waste interception; velocity neutralization; linearity; unit response function; algebraic technological function; quadratic programming; decision variable.

ABSTRACT

A groundwater hydraulic management model is used to identify the optimal strategy for allocating limited fresh-water supplies and containing wastes in a hypothetical aquifer affected by brine contamination from surface disposal ponds. The present cost of pumping from a network of potential supply and interception wells is minimized over a five-year planning period, subject to a set of hydraulic, institutional, and legal constraints. Hydraulic constraints are formulated using linear systems theory to describe drawdown and velocity variables as linear functions of supply and interception well discharge decision variables. Successful validation of the optimal management strategy suggests that the model formulation can feasibly be applied to define management options for locally contaminated aquifer systems which are used to fulfill fresh-water demands.