• optical water quality;
  • color;
  • clarity;
  • rivers;
  • turbidity;
  • visibility;
  • yellow substance

ABSTRACT: Six years (1989–1994) of data from New Zealand's National Rivers Water Quality Network were used to characterize the optical water quality regime of river waters as regards: visual clarity (black disc visibility), turbidity, and light-absorbing aquatic humic material (referred to as ‘yellow substance,’ measured as light absorption at 440 nm). Quantitative relationships between optical water quality variables and flow in rivers are well-described by power law expressions. Visual clarity usually decreases strongly with increasing flow in individual rivers. There is a strong, inverse relationship between turbidity and visibility, but, because of differences between sites, turbidity is not a good general predictor of visual clarity (the attribute of real interest) in rivers. Yellow substance tends to increase with increasing flow, probably because during rainstorms, soil water high in yellow-colored humic material, rather than rain water or ground water, dominates discharge. Therefore, rivers are typically clear and low in humic matter at low flow, and turbid and yellow-colored at high flow.