SIMULATION OF FRESHWATER DISCHARGES FROM UNGAGED AREAS TO THE SEBASTIAN RIVER, FLORIDA1

Authors


  • 1

    Paper No. 99046 of the Journal of the American Water Resources Association.Discussions are open until June 1, 2001.

Abstract

ABSTRACT: Due to alterations in the natural drainage system over the past several decades and intensified agricultural practices, freshwater discharges to the Sebastian River, Florida, have increased substantially. As a result, salinity patterns in the Sebastian River and adjacent Indian River lagoon have been disrupted and the influx of nutrients has increased. Recently, the St. Johns River Water Management District has developed a 3-D hydrodynamic and salinity model for the Sebastian River and adjacent Indian River to study the effects of freshwater inflows, and to set guidelines for management of future freshwater discharges. Freshwater inflows to the Sebastian River are part of the input data of the hydrodynamic model. Except for the downstream drainage areas, inflows are gaged, and the data were used for calibration of the hydrologic simulations. Collectively, the downstream ungaged areas constitute about 16 percent of the total drainage area. Because of the significant contribution to the total drainage area, reliable estimates of freshwater discharges from the ungaged areas to the Sebastian River are needed. This case study illustrates the development of a set of model parameters, reflecting the hydrologic and physiographic characteristics of the entire region. In this context region applies to the watersheds located in the coastal area along the Indian River from Titusville in the north to Vero Beach in the south. The parameter set was first tested on a number of gaged drainage basins in the region, and was then applied to the ungaged areas.

Ancillary