• erosion;
  • sedimentation;
  • landslides;
  • debris flows;
  • aquatic ecosystems;
  • forestry;
  • roads;
  • large woody debris

ABSTRACT: Debris flows in the Pacific Northwest can play a major role in routing sediment and wood stored on hillslopes and in first-through third-order channels and delivering it to higher-order channels. Field surveys following a large regional storm event investigated 53 debris flows in the central Oregon Coast Range to determine relationships among debris flow characteristics and the age class of the surrounding forest. The volume of sediment and wood delivered by debris flows was strongly correlated with runout length. Debris flows that initiated at roads were significantly longer than nonroad related failures, and road related landslides were an order of magnitude larger than nonroad related landslides. Clearcuts and roads tended to have more numerous contributing landslides relative to second growth and mature forests. No statistically significant difference in the average debris flow runout length was detected among the forest age classes, although debris flows initiating in clearcuts and mixed forest and at roads occasionally supported extremely long runout lengths that were outside the range of variability observed in completely forested basins. The size of wood in deposits was not correlated with the size of trees on the adjacent slopes, suggesting that the majority of wood in debris flow deposits was from remobilization of wood previously stored in low order channels.