SEARCH

SEARCH BY CITATION

Keywords:

  • infiltration and soil moisture;
  • low impact development;
  • modeling;
  • infiltration based storm water management;
  • surface water hydrology;
  • storm hydrograph;
  • water budget

ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.