SEARCH

SEARCH BY CITATION

Literature Cited

  • Almasri, M.N. and J.J. Kaluarachchi, 2005. Multi-Criteria Decision Analysis for the Optimal Management of Nitrate Contamination of Aquifers. Journal of Environmental Management 74(4):365-381.
  • Arnold, J.G., R. Srinivasan, R.S. Muttiah, and P.M. Allen, 1999. Continental Scale Simulation of the Hydrologic Balance. Journal of the American Water Resources Association 35(5):1037-1052.
  • Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams, 1998. Large Area Hydrologic Modelling and Assessment Part I: Model Development. Journal of the American Water Resources Association 34(1):73-89.
  • Bazi, Y. and F. Melgani, 2007. Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation. IEEE Transactions on Geoscience and Remote Sensing 45(6):1887-1895.
  • Beven, K.J., 2000. Rainfall-Runoff Modelling: The Prime. John Wiley & Sons Press, New York.
  • Beven, K. and A. Binley, 1992. The Future of Distributed Models: Model Calibration and Uncertainty Prediction, Hydrol. Process 6:279-298.
  • CEAP (Conservation Effects Assessment Project), 2008. USDA Natural Resources Conservation Service, Washington, D.C., http://www.nrcs.usda.gov/technical/NRI/ceap/,accessed March 14, 2008.
  • Chang, C. and C. Lin, 2001. LIBSVM : A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, accessed August 8, 2008.
  • Chau, K.W., 2006. Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River. Journal of Hydrology 329:363-367.
  • Chu, T.W. and A. Shirmohammadi, 2004. Evaluation of the SWAT Model’s Hydrology Component in the Piedmont Physiographic Region of Maryland. Transactions of the ASAE 47(4):1057-1073.
  • Di Luzio, M., R. Srinivasan, and J.G. Arnold, 2002. Integration of Watershed Tools and SWAT Model Into BASINS. Journal of the American Water Resources Association 38(4):1127-1141.
  • Gassman, P.W., M. Reyes, C.H. Green, and J.G. Arnold, 2007. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Directions, Trans. ASABE 50(4):1212-1250.
  • Gill, M.K., T. Asefa, M.W. Kemblowski, and M. McKee, 2006a. Soil Moisture Prediction Using Support Vector Machines. Journal of the American Water Resources Association 42(4):1033-1046.
  • Gill, M.K., Y.H. Kaheil, A. Khalil, M. McKee, and L. Bastidas, 2006b. Multiobjective Particle Swarm Optimization for Parameter Estimation in Hydrology. Water Resources Research 42:W07417, doi: DOI: 10.1029/2005WR004528.
  • Gutmann, H.M., 2001. A Radial Basis Function Method for Global Optimization, J. Journal of Global Optimization 19:201-227.
  • Hossain, F. and E.N. Anagnostou, 2004. Assessment of a Stochastic Parameter Sampling Scheme for Efficient Uncertainty Analyses of Hydrologic Models. Computers and Geosciences 31(4):497-512.
  • Johnson, V.M. and L.L. Rogers, 2000. Accuracy of Neural Network Approximators in Simulation-Optimization. Journal of Water Resources Planning and Management 126(2):48-56.
  • Kennedy, J. and R.C. Eberhart, 2001. Swarm Intelligence. Morgan Kaufmann, San Mateo, CA.
  • Khalil, A., M.N. Almasri, M. McKee, and J.J. Kaluarachchi, 2005. Applicability of Statistical Learning Algorithms in Groundwater Quality Modeling. Water Resources Research 41:W05010, doi: DOI: 10.1029/2004WR003608.
  • Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference on Artificial Intelligence 14(2):1137-1145.
  • Legates, D.R. and J.M. Gregory, 1999. Evaluating the use of “Goodness of fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resources Research 35(1):233-241.
  • Liang, F., 2005. Bayesian Neural Networks for non-Linear Time Series Forecasting. Statistics and Computing 15:13-29.
  • Liong, S.Y. and C. Sivapragasam, 2002. Flood Stage Forecasting With Support Vector Machines. Journal of the American Water Resource Association. 38(1):173-196.
  • Morshed, J. and J.J. Kaluarachchi, 1998. Application of Artificial Neural Network and Genetic Algorithm in Flow and Transport Simulations. Advances in Water Resoures 22(2):145-158.
  • Mugunthan, P. and C.A. Shoemaker, 2006. Assessing the Impacts of Parameter Uncertainty for Computationally Expensive Groundwater Models. Water Resources Research 42:W10428, doi: DOI: 29/2005WR004640.
  • Nash, J.E. and J.V. Sutcliffe, 1970. River Flow Forecasting Through Conceptual Models: Part I. A Discussion of Principles. Journal of Hydrology 10(3):282-290.
  • Neitsch, S.L., A.G. Arnold, J.R. Kiniry, J.R. Srinivasan, and J.R. Williams, 2005. Soil and Water Assessment Tool User’s Manual: Version 2005. Texas Water Resources Institute, TR-192, College Station, Texas.
  • Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, and L. Hauck, 2001. Validation of the SWAT Model on a Large River Basin With Point and Nonpoint Sources. Journal of the Americn Water Resource Association 37(5):1169-1188.
  • Sheridan, J.M., 1997. Rainfall-Streamflow Relations for Coastal Plain Watersheds. Transactions of the ASAE 13(3):333-344.
  • Sloan, P.G., I.D. Morre, G.B. Coltharp, and J.D. Eigel, 1983. Modeling Surface and Subsurface Stormflow on Steeply-Sloping Forested Watersheds. University of Kentucky, Lexington, Kentucky, Water Resources Institute Report 142.
  • Smola, A.J. and B. Scholköpf, 2004. A Tutorial on Support Vector Regression. Statistics and Computing 14:199-222.
  • Spruill, C.A., S.R. Workman, and J.L. Taraba, 2000. Simulation of Daily and Monthly Stream Discharge From Small Watersheds Using the SWAT Model. Transactions of the ASAE 43(6):1431-1439.
  • Srinivasan, R., J.G. Arnold, and C.A. Jones, 1998. Hydrologic Modeling of the United States With the Soil and Water Assessment Tool. Water Resources Development 14(3):315-325.
  • Tolson, B.A. and C.A. Shoemaker, 2008. Efficient Prediction Uncertainty Approximation in the Calibration of Environmental Simulation Models. Water Resources Research 44:W04411, doi: DOI: 10.1029/2007WR005869.
  • USDA-SCS (U.S. Department of Agriculture-Soil Conservation Service), 1972. National Engineering Handbook, Hydrology Section 4, Chap. 4-10. U. S. Department of Agriculture, Soil Conservation Service, Washington, D.C.
  • Van Griensven, A., T. Meixner, S. Grunwald, T. Bishop, M. Di luzio, and R. Srinivasan, 2006. A Global Sensitivity Analysis Tool for the Parameters of Multi-Variable Catchment Models. Journal of Hydrology 324:10-23.
  • Van Liew, M.W., J.G. Arnold, and D.D. Bosch, 2005. Problems and Potential of Autocalibrating a Hydrologic Model. Transactions of the ASAE 48(3):1025-1040.
  • Van Liew, M.W. and J. Garbrecht, 2003. Hydrologic Simulation of the Little Washita River Experimental Watershed Using SWAT. Journal of the American Water Resources Association 39(2):413-426.
  • Van Liew, M.W., T.L. Veith, D.D. Bosch, and J.G. Arnold, 2007. Suitability of SWAT for the Conservation Effects Assessment Project: A Comparison on USDA ARS Watersheds. Journal of Hydrology Engr. 12(2):173-189.
  • Vapnik, V., 1998. Statistical Learning Theory. John Wiley and Sons, New York.
  • Vapnik, V., 1999. Three Remarks on the Support Vector Method of Function Estimation. In : Advances in Kernel Methods – Supoort Vector Learning, B.Schölkopf, C.J.C.Burges, and A.J.Smola (Editors). MIT Press, Cambridge, MA, pp. 25-41.
  • Veith, T.L., A.N. Sharpley, J.L. Weld, and W.J. Grurek, 2005. Comparison of Measured and Simulated Phosphorous Losses With Index Site Vulnerability. Transactions of the ASAE 48(2):557-565.
  • Yang, J., P. Reichert, K.C. Abbaspour, J. Xia, and H. Yang, 2008. Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chaohe Basin in China. Journal of Hydrology 358:1-23.
  • Ye, K.Q., W. Li, and A. Sudjianto, 2000. Algorithmic Construction of Symmetric Latin Hypercube Designs. Journal of Statistical Planning and Inference 90:145-159.
  • Yu, P., S. Chen, and I. Chang, 2006. Support Vector Regression for Real-Time Flood Stage Forecasting. Journal of Hydrology 328:704-716.
  • Zhang, X., R. Srinivasan, B. Debele, and F. Hao, 2008. Runoff Simulation of the Headwaters of the Yellow River Using the SWAT Model With Three Snowmelt Algorithms. Journal of the American Water Resources Association 44(1):48-61.
  • Zou, R., W.S. Lung, and J. Wu, 2007. An Adaptive Neural Network Embedded Genetic Algorithm Approach for Inverse Water Quality Modeling. Water Resources Research 43:W08427, doi: DOI: 10.1029/2006WR005158.