Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management1


  • 1

    Paper No. JAWRA-09-0031-P of the Journal of the American Water Resources Association (JAWRA). Discussions are open until six months from print publication.

(E-Mail/ Vidon:


Vidon, Philippe, Craig Allan, Douglas Burns, Tim P. Duval, Noel Gurwick, Shreeram Inamdar, Richard Lowrance, Judy Okay, Durelle Scott, and Steve Sebestyen, 2010. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. Journal of the American Water Resources Association (JAWRA) 46(2):278-298. DOI: 10.1111/j.1752-1688.2010.00420.x

Abstract:  Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as “hot spots and moments” of retention, degradation, or production. Nevertheless, studies investigating the importance of hot phenomena (spots and moments) in riparian zones have thus far largely focused on nitrogen (N) despite compelling evidence that a variety of elements, chemicals, and particulate contaminant cycles are subject to the influence of both biogeochemical and transport hot spots and moments. In addition to N, this review summarizes current knowledge for phosphorus, organic matter, pesticides, and mercury across riparian zones, identifies variables controlling the occurrence and magnitude of hot phenomena in riparian zones for these contaminants, and discusses the implications for riparian zone management of recognizing the importance of hot phenomena in annual solute budgets at the watershed scale. Examples are presented to show that biogeochemical process-driven hot spots and moments occur along the stream/riparian zone/upland interface for a wide variety of constituents. A basic understanding of the possible co-occurrence of hot spots and moments for a variety of contaminants in riparian systems will increase our understanding of the influence of riparian zones on water quality and guide management strategies to enhance nutrient or pollutant removal at the landscape scale.