SEARCH

SEARCH BY CITATION

Keywords:

  • environmental indicators;
  • environmental sampling;
  • qualitative physical habitat assessment;
  • stream monitoring and assessment;
  • aquatic surveys;
  • fish and macroinvertebrate assemblages;
  • stream visual assessment protocol;
  • qualitative habitat evaluation index;
  • rapid bioassessment protocol;
  • Environmental Monitoring and Assessment Program

Hughes, Robert M., Alan T. Herlihy, and Philip R. Kaufmann, 2010. An Evaluation of Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in Ten U.S. States. Journal of the American Water Resources Association (JAWRA) 46(4): 792-806. DOI: 10.1111/j.1752-1688.2010.00455.x

Abstract:  Assessment of stream physical habitat condition is important for evaluating stream quality globally. However, the diversity of metrics and methods for assessing physical habitat condition confounds comparisons among practitioners. We surveyed 51 previously sampled stream sites (0.0-6.3 m wide) located in regions of row-crop agriculture in Oregon, California, North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Pennsylvania, Maryland, and West Virginia to evaluate the comparability of four indexes of physical habitat condition relative to each other. We also compared the indexes to previously calculated indexes of fish and macroinvertebrate condition. The physical habitat indexes included the Stream Visual Assessment Protocol Version 2 of the Natural Resources Conservation Service, the qualitative habitat evaluation index of the Ohio Environmental Protection Agency, the rapid bioassessment protocol of the United States Environmental Protection Agency (USEPA), and a qualitative physical habitat index based on USEPA quantitative physical habitat measurements. All four indexes were highly correlated with each other, but low-to-moderately correlated with biotic index scores for fish and macroinvertebrate assemblages. Moderately high correlations occurred between some macroinvertebrate biotic index scores and quantitative metrics. We conclude that additional research is needed to increase the predictive and diagnostic capabilities of qualitative physical habitat indexes.