SEARCH

SEARCH BY CITATION

Keywords:

  • iTree-Hydro;
  • UFORE-Hydro;
  • cold climate hydrology;
  • snow interception;
  • snow accumulation;
  • snow ablation;
  • snow sublimation

Yang, Yang, Theodore A. Endreny, and David J. Nowak, 2011. iTree-Hydro: Snow Hydrology Update for the Urban Forest Hydrology Model. Journal of the American Water Resources Association (JAWRA) 47(6):1211–1218. DOI: 10.1111/j.1752-1688.2011.00564.x

Abstract:  This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate hydrology routines presented in this update to iTree-Hydro include: (1) snow interception to simulate the capture of snow by the vegetation canopy, (2) snow unloading to simulate the release of snow triggered by wind, (3) snowmelt to simulate the solid to liquid phase change using a heat budget, and (4) snow sublimation to simulate the solid to gas phase via evaporation. Cold climate hydrology routines were tested with research-grade snow accumulation and weather data for the winter of 1996-1997 at Umpqua National Forest, Oregon. The Nash-Sutcliffe efficiency for open area snow accumulation was 0.77 and the Nash-Sutcliffe efficiency for under canopy was 0.91. The USDA Forest Service offers iTree-Hydro for urban forest hydrology simulation through http://www.iTreetools.org.