• Open Access

Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State

Authors


  • Paper No. JAWRA-10-0148-P of the Journal of the American Water Resources Association (JAWRA). Received September 8, 2010; accepted October 24, 2011. © 2012 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA. Discussions are open until six months from print publication.

  • Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

Abstract

Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x

Abstract:  This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (< 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications.

Ancillary