Literature cited

  • Beeman, R. W., K. S. Friesen, and R. E. Denell. 1992. Maternal-effect, selfish genes in flour beetles. Science 256:8992.
  • Burt, A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings. Biological Sciences/The Royal Society 270:921928.
  • Burt, A. 2004. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Current Opinion in Genetics and Development 14:609615.
  • Burt, A., and R. Trivers. 2006. Genes in Conflict: The Biology of Selfish Genetic Elements. Harvard University Press, Cambridge, U.K.
  • Chen, C. H., H. Huang, C. M. Ward, J. T. Su, L. V. Schaeffer, M. Guo, and B. A. Hay. 2007. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316:597600.
  • Davis, S., N. Bax, and P. Grewe. 2001. Engineered underdominance allows efficient and economical introgression of traits into pest populations. Journal of Theoretical Biology 212:8398.
  • Fisher, R. 1930. The Genetical Theory of Natural Selection. Dover, New York [reprinted 1958].
  • Foster, W. A., and A. O. Lea. 1975. Renewable fecundity of male Aedes aegypti following replenishment of seminal vesicles and accessory glands. Journal of Insect Physiology 21:10851090.
  • Franz, A. W. E., I. Sanchez-Vargas, Z. N. Adelman, C. D. Blair, B. J. Beaty, A. A. James, and K. E. Olson. 2006. Engineering RNA interference- based resistance to dengue virus type-2 in genetically-modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 103:41984203.
  • Gotelli, N. J. 2001. A Primer Of Ecology. Sinauer Associates, Sunderland, MA.
  • Gould, F., K. Magori, and Y. Huang. 2006. Genetic strategies for controlling mosquito-borne diseases. American Scientist 94:238246.
  • Harrington, L. C., J. D. Edman, and T. W. Scott. 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? Journal of Medical Entomology 38:411422.
  • Huang, Y., K. Magori, A. L. Lloyd, and F. Gould. 2007. Introducing desirable transgenes into insect populations using Y-linked meiotic drive: a theoretical assessment. Evolution 61:717726.
  • Ito, J., A. Ghosh, L. A. Moreira, E. A. Wimmer, and M. Jacobs-Lorena. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452455.
  • James, A. A. 2005. Gene drive systems in mosquitoes: rules of the road. Trends in Parasitology 21:6467.
  • Klassen, W., and C. F. Curtis 2005. History of sterile insect technique. In V. A.Dyck, J.Hendrichs, and A. S.Robinson, eds. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, pp. 336, Springer, The Netherlands.
  • Magori, K., and F. Gould. 2006. Genetically engineered underdominance for manipulation of pest populations: a deterministic model. Genetics 172:26132620.
  • McDonald, P. T. 1977. Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya Coast I. Adult survivorship and population size. Journal of Medical Entomology 14:4248.
  • Rasgon, J. L., and T. W. Scott. 2004. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically-modified mosquitoes. Insect Biochemistry and Molecular Biology 34:707713.
  • Scott, T. W., W. Takken, B. G. J. Knols, and C. Boete. 2002. The ecology of genetically modified mosquitoes. Science 298:117119.
  • Sinkins, S. P., and F. Gould. 2006. Gene-drive systems for insect disease vectors. Nature Reviews. Genetics 7:427435.
  • Wade, M. J., and R. W. Beeman. 1994. The population dynamics of maternal-effect selfish genes. Genetics 138:13091314.
  • Williams, R. W., and A. Berger. 1980. The relation of female polygamy to gonotrophic activity in the ROCK strain of Aedes aegypti. Mosquito News 40:597604.
  • Young, A. D. M., and A. E. R. Downe. 1982. Renewal of sexual receptivity in mated female mosquitoes, Aedes aegypti. Physiological Entomology 7:467471.